Magnetic functionalized graphene oxide combined with ultra-high performance liquid chromatography for trace detection of succinate dehydrogenase inhibitor fungicides in food.
Box-Behnken design
magnetic solid phase extraction
mass spectrometry
pesticide residue
ultra-high performance liquid chromatography
Journal
Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
28
07
2023
received:
14
02
2023
accepted:
30
07
2023
pubmed:
16
8
2023
medline:
16
8
2023
entrez:
15
8
2023
Statut:
ppublish
Résumé
In this study, an efficient, sensitive, and convenient magnetic solid-phase extraction method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed for the simultaneous determination of 19 succinate dehydrogenase inhibitor fungicide residues in six different food matrices The synthesized tetraethylenepentamine magnetic graphene oxide nanocomposite showed the advantages of good dispersibility, large specific surface area (113.93 m
Identifiants
pubmed: 37582657
doi: 10.1002/jssc.202300108
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300108Subventions
Organisme : National Natural Science Foundation of China
ID : 32272443
Organisme : Central Public-interest Scientific Institution Basal Research Fund
ID : Y2022QC12
Organisme : Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry
ID : CP2021YB05
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: succinate dehydrogenase inhibitors. Bioorgan Med Chem. 2021;50:116476. https://doi.org/10.1016/j.bmc.2021.116476
Gong L, Huang W, Han Z, Jiang F, Peng QZ, Huang ZQ, et al. Determination of 18 succinate dehydrogenase inhibitor fungicides in foods by modified QuEChERS extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry. Food Sci. 2021;42(18):261-8, (in Chinese). https://doi.org/10.7506/spkx1002-6630-20200528-345
Wang YF, Wang W, Qin HJ, Liu YX, Ge BK, Gao JH. Determination of 10 amides in fruits and vegetables by liquid chromatography-mass. Spectrometer. 2010;31(01):113-6.
European Food Safety Authority. EFSA Regulation (EC) No 396/2005, 2015a. Completeness check report on the review of the existing MRLs by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005. 2015;https://efsa.europa.eu
GB/T 2763-2021. National Standards of the People's Republic of China: evaluation of analytical limits for detection and quantification. Beijing: China Standard Press; 2021.
Nasiri M, Ahmadzadeh H, Amiri A. Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: Application to apple juice and environmental water. Talanta 2021;227:122078. https://doi.org/10.1016/j.talanta.2020.122078
Pellicer-Castell E, Belenguer-Sapiña C, Amorós P, Haskouri JE, Herrero-Martínez JM, Mauri-Aucejo A. Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta 2018;189:560-7. https://doi.org/10.1016/j.talanta.2018.07.044
Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J Chromatogr A. 2018;1559:95-101. https://doi.org/10.1016/j.chroma.2017.12.059
Zohrabi P, Shamsipur M, Hashemi M, Hashemi B. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 2016;160:340-6. https://doi.org/10.1016/j.talanta.2016.07.036
Yang X, Luo J, Li S, Liu C. Evaluation of nine pesticide residues in three minor tropical fruits from southern China. Food Control. 2016;60:677-82. https://doi.org/10.1016/j.foodcont.2015.08.036
Amiri A, Tayebee R, Abdar A, Sani FN. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A. 2019;1597:39-45. https://doi.org/10.1016/j.chroma.2019.03.039
Acosta-Dacal A, Rial-Berriel C, Díaz-Díaz R, MdM B-S, Luzardo OP. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci Total Environ. 2020;753(3):142015. https://doi.org/10.1016/j.scitotenv.2020.142015
Farooq S, Wu H, Nie J, Ahmad S, Muhammad I, Zeeshan M. Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection. Sci Total Environ. 2022;804:150293. https://doi.org/10.1016/j.scitotenv.2021.150293
Antonio AF, Eric CA, Mercader JV, Consuelo A, Antonio AS, Esteve-Turrillas FA. Determination of succinate-dehydrogenase-inhibitor fungicide residues in fruits and vegetables by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407(14):4207-11. https://doi.org/10.1007/s00216-015-8608-3
Oller-Ruiz A, Garrido I, Viñas P, Campillo N, Fenoll J, Hernández-Córdoba M. Reliable analysis of chlorophenoxy herbicides in soil and water by magnetic solid phase extraction and liquid chromatography. Environ Chem Lett. 2018;16(3):1077-82. https://doi.org/10.1007/s10311-018-0725-8
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trend Anal Chem. 2019;120:115632. https://doi.org/10.1016/j.trac.2019.115632
Li ZL, Wei YD, Wei JN, Chen KY, He Y, Wang MM. Monodispersed CaCO3@ hydroxyapatite/magnetite microspheres for efficient and selective extraction of benzoylurea insecticides in tea beverages samples. J Hazard Mater. 2022;433:128754. https://doi.org/10.1016/j.jhazmat.2022.128754
Mei J, Zhang L, Niu Y. Fabrication of the magnetic manganese dioxide/graphene nanocomposite and its application in dye removal from the aqueous solution at room temperature. Mater Res Bull. 2015;70:82-6. https://doi.org/10.1016/j.materresbull.2015.04.021
Rabchinskii MK, Ryzhkov SA, Kirilenko DA, Ulin NV, Brunkov PN. From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties. Sci Rep. 2020;10(1):6902-14. https://doi.org/10.1038/s41598-020-63935-3
Huang T, Tang X, Luo K, Wu Y, Hou X, Tang S. An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trend Anal Chem. 2021;139:116255. https://doi.org/10.1016/j.trac.2021.116255
Gao S, Guo Y, Li X, Wang X, Wang J, Qian F, et al. Magnetic solid phase extraction of sulfonamides based on carboxylated magnetic graphene oxide nanoparticles in environmental waters. J Chromatogr A. 2018;1575:1-10. https://doi.org/10.1016/j.chroma.2017.12.059
Gupta VK, Agarwal S, Asif M, Fakhri A, Sadeghi N. Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. J Colloid Interf Sci. 2017;497:193-200. https://doi.org/10.1016/j.jcis.2017.03.006
Safari M, Yamini Y, Mani-Varnosfaderani A, Asiabi H. Synthesis of Fe3O4@ PPy-MWCNT nanocomposite and its application for extraction of ultra-trace amounts of PAHs from various samples. J Iran Chem Soc. 2017;14(3):623-34. https://doi.org/10.1007/s13738-016-1012-x
García-Rodríguez D, Cela-Torrijos R, Lorenzo-Ferreira RA, Carro-Díaz AM. Analysis of pesticide residues in seaweeds using matrix solid-phase dispersion and gas chromatography-mass spectrometry detection. Food Chem. 2012;135(1):259-67. https://doi.org/10.1016/j.foodchem.2012.04.088
Casado-Hidalgo G, Martínez-García G, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. New validated method for the determination of six opium alkaloids in poppy seed-containing bakery products by high-performance liquid chromatography-tandem mass spectrometry after magnetic solid-phase extraction. J Agri Food Chem. 2022;70(24):7594-606. https://doi.org/10.1021/acs.jafc.2c01664
Moreno-González D, Cutillas V, Hernando MD, Alcantara-Duran J, Garcia-Reyes JF, Molina-Díaz A. Quantitative determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high resolution mass spectrometry. Sci Total Environ. 2020;715:137005. https://doi.org/10.1016/j.scitotenv.2020.137005
Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY. Magnetic solid phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J Chromatogr A. 2014;1347:30-8. https://doi.org/10.1016/j.chroma.2014.04.073
Ullah T, Gul K, Khan H, Ara B, Zia TUH. Efficient removal of selected fluoroquinolones from the aqueous environment using reduced magnetic graphene oxide/polyaniline composite. Chemosphere 2022;293:133452. https://doi.org/10.3969/j.issn.1005-6521.2010.01.036
Wang Y, Miao X, Wei H, Liu D, Xia G, Yang X. Dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the determination of multiple pesticides in celery. Food Anal Method. 2016;9(8):2133-41. https://doi.org/10.1007/s12161-015-0390-5
Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv Colloid Interface. 2014;211:93-101. https://doi.org/10.1016/j.cis.2014.06.006
Ma J, Wu G, Li S, Tan W, Wang X, Li J. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J Chromatogr A. 2018;1553:57-66. https://doi.org/10.1016/j.chroma.2018.04.034
Ren K, Zhang W, Cao S, Wang G, Zhou Z. Carbon-based Fe3O4 nanocomposites derived from waste pomelo peels for magnetic solid-phase extraction of 11 triazole fungicides in fruit samples. Nanomaterial 2018;8(5):302-14. https://doi.org/10.3390/nano8050302
Fillâtre Y, Rondeau D, Bonnet B, Daguin A, Jadas-Hécart A, Communal PY. Multiresidue analysis of multiclass pesticides in lavandin essential oil by LC/MS/MS using the scheduled selected reaction monitoring mode. Anal Chem. 2011;83(1):109-17. https://doi.org/10.1021/ac1018292
Yang H, Sun WH, Cao ZY, M Y, Chen X. Determination of eight novel succinate dehydrogenase inhibitor fungicides in vegetables and fruits by modified QuEChERS. Chromatography 2016;34(11):1070-6. https://doi.org/10.3724/SP.J.1123.2016.07005
Wu J, Zhi S, Jia C, Li X, Zhu X, Zhao E. Dispersive solid-phase extraction combined with dispersive liquid-liquid microextraction for simultaneous determination of seven succinate dehydrogenase inhibitor fungicides in watermelon by ultra-high performance liquid chromatography with tandem mass spectrometry. J Sep Sci. 2019;42(24):3688-96. https://doi.org/10.1002/jssc.201900862
Senosy IA, Zhang XZ, Lu ZH, Guan XY, Gbiliy A. Magnetic metal-organic framework MIL-100 (Fe)/polyethyleneimine composite as an adsorbent for the magnetic solid-phase extraction of fungicides and their determination using HPLC-UV. Microchim Acta. 2021;188(2):(33):102-9. https://doi.org/10.1007/s00604-020-04648-2
Mahpishanian S, Sereshti H. Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination. J Chromatogr A. 2016;1443:43-53. https://doi.org/10.1016/j.chroma.2016.03.046
Li DD, He M, Chen BB, Hu B. Metal organic frameworks-derived magnetic nanoporous carbon for preconcentration of organophosphorus pesticides from fruit samples followed by gas chromatography-flame photometric detection. J Chromatogr A. 2019;1583:19-27. https://doi.org/10.1016/j.chroma.2018.11.012
Lu J, Wang R, Luan J, Li Y, He X, Chen L, et al. A functionalized magnetic covalent organic framework for sensitive determination of trace neonicotinoid residues in vegetable samples. J Chromatogr A. 2020;1618:460898. https://doi.org/10.1016/j.chroma.2020.460898
Cho S-K, Abd El-Aty AM, Park KH, Park J-H, Assayed ME, Jeong Y-M, Park Y-S, Shim J-H. Simple multiresidue extraction method for the determination of fungicides and plant growth regulator in bean sprouts using low temperature partitioning and tandem mass spectrometry. Food Chem. 2013;136(3-4):1414-1420. https://doi.org/10.1016/j.foodchem.2012.09.068
Zhang S, Yang Q, Yang X, Wang W, Li Z, Zhang L, Wang C, Wang Z. A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta. 2017;166:46-53. https://doi.org/10.1016/j.talanta.2017.01.042
Fernández-Ramos C, Šatínský D, Solich P. New method for the determination of carbamate and pyrethroid insecticides in water samples using on-line SPE fused core column chromatography. Talanta. 2014;129:579-585. https://doi.org/10.1016/j.talanta.2014.06.037