Data-driven predictions of complex organic mixture permeation in polymer membranes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 Aug 2023
15 Aug 2023
Historique:
received:
05
01
2023
accepted:
17
07
2023
medline:
16
8
2023
pubmed:
16
8
2023
entrez:
15
8
2023
Statut:
epublish
Résumé
Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures.
Identifiants
pubmed: 37582784
doi: 10.1038/s41467-023-40257-2
pii: 10.1038/s41467-023-40257-2
pmc: PMC10427679
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4931Informations de copyright
© 2023. Springer Nature Limited.
Références
Sci Adv. 2022 Jul 22;8(29):eabn9545
pubmed: 35857839
Nat Mater. 2023 Oct 16;:
pubmed: 37845319
Science. 2022 Jun 3;376(6597):1105-1110
pubmed: 35653467
J Chem Inf Model. 2019 Oct 28;59(10):4188-4194
pubmed: 31545900
Membranes (Basel). 2022 Jul 12;12(7):
pubmed: 35877908
Science. 2022 Sep 30;377(6614):1555-1561
pubmed: 36173852
Patterns (N Y). 2021 Apr 09;2(4):100238
pubmed: 33982028
Science. 2020 Jul 17;369(6501):310-315
pubmed: 32675373
Nature. 2016 Apr 28;532(7600):435-7
pubmed: 27121824