Current state and prospects of artificial intelligence in allergy.

artificial intelligence deep learning diagnosis machine learning precision medicine

Journal

Allergy
ISSN: 1398-9995
Titre abrégé: Allergy
Pays: Denmark
ID NLM: 7804028

Informations de publication

Date de publication:
10 2023
Historique:
revised: 08 07 2023
received: 20 04 2023
accepted: 31 07 2023
medline: 2 10 2023
pubmed: 16 8 2023
entrez: 16 8 2023
Statut: ppublish

Résumé

The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.

Identifiants

pubmed: 37584170
doi: 10.1111/all.15849
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2623-2643

Informations de copyright

© 2023 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Références

FDA. Artificial intelligence and machine learning (AI/ML)-enabled medical devices. Accessed December 11, 2022. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit Health. 2021;3(3):e195-e203. doi:10.1016/S2589-7500(20)30292-2
Zhu S, Gilbert M, Chetty I, Siddiqui F. The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use. Int J Med Inform. 2022;165:104828. doi:10.1016/J.IJMEDINF.2022.104828
Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243. doi:10.1136/SVN-2017-000101
Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med. 1936;21:25. doi:10.1007/s11936-019-0728-1
Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019;19(1):1-16. doi:10.1186/S12911-019-1004-8/FIGURES/12
Bzdok D, Altman N, Krzywinski M. Points of significance: statistics versus machine learning. Nat Methods. 2018;15(4):233-234. doi:10.1038/NMETH.4642
Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731. doi:10.1038/S41551-018-0305-Z
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:7553. doi:10.1038/nature14539
Shahinfar S, Meek P, Falzon G. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol Inform. 2020;57:101085. doi:10.1016/J.ECOINF.2020.101085
Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst. 2021;32(2):604-624. doi:10.1109/TNNLS.2020.2979670
Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access. 2019;7:53040-53065. doi:10.1109/ACCESS.2019.2912200
Piccialli F, di Somma V, Giampaolo F, Cuomo S, Fortino G. A survey on deep learning in medicine: why, how and when? Inf Fusion. 2021;66:111-137. doi:10.1016/J.INFFUS.2020.09.006
Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges. JAMA Intern Med. 2019;179(3):293-294. doi:10.1001/JAMAINTERNMED.2018.7117
Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama. 2017;318(22):2211-2223. doi:10.1001/JAMA.2017.18152
FDA. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. Accessed December 13, 2022. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
van der Heijden AA, Abramoff MD, Verbraak F, van Hecke M, Liem A, Nijpels G. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn diabetes care system. Acta Ophthalmol. 2018;96(1):63-68. doi:10.1111/AOS.13613
Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43(12):6654-6666. doi:10.1118/1.4967345
Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat Med. 2021;27(2):244-249. doi:10.1038/s41591-020-01174-9
Potnis KC, Ross JS, Aneja S, Gross CP, Richman IB. Artificial intelligence in breast cancer screening: evaluation of FDA device regulation and future recommendations. JAMA Intern Med. 2022;182(12):1306-1312. doi:10.1001/JAMAINTERNMED.2022.4969
DALL·E 2. Accessed January 12, 2023. https://openai.com/dall-e-2/
ChatGPT: optimizing language models for dialogue. Accessed January 12, 2023. https://openai.com/blog/chatgpt/
Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188(12):2222-2239. doi:10.1093/AJE/KWZ189
Barinov L, Jairaj A, Becker M, et al. Impact of data presentation on physician performance utilizing artificial intelligence-based computer-aided diagnosis and decision support systems. J Digit Imaging. 2019;32(3):408-416. doi:10.1007/S10278-018-0132-5/TABLES/6
Mango VL, Sun M, Wynn RT, Ha R. Should we ignore, follow, or biopsy? Impact of artificial intelligence decision support on breast ultrasound lesion assessment. AJR Am J Roentgenol. 2020;214(6):1445. doi:10.2214/AJR.19.21872
Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals. 2020;139:110059. doi:10.1016/J.CHAOS.2020.110059
Albahri AS, Hamid RA, Alwan JK, et al. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J Med Syst. 2020;44:1-11. doi:10.1007/s10916-020-01582-x
Kadioglu O, Saeed M, Greten HJ, Efferth T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med. 2021;133:104359. doi:10.1016/J.COMPBIOMED.2021.104359
Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon. 2020;6(8):e04639. doi:10.1016/J.HELIYON.2020.E04639
Ho TK. Random decision forests. Proc Int Conf Doc Anal Recognit. 1995;1:278-282. doi:10.1109/ICDAR.1995.598994
Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;785-794. doi:10.1145/2939672.2939785
Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;30:3147-3156.
Oksel C, Haider S, Fontanella S, Frainay C, Custovic A. Classification of pediatric asthma: from phenotype discovery to clinical practice. Front Pediatr. 2018;6:258. doi:10.3389/FPED.2018.00258
Brew BK, Chiesa F, Lundholm C, Örtqvist A, Almqvist C. A modern approach to identifying and characterizing child asthma and wheeze phenotypes based on clinical data. PloS One. 2019;14(12):e0227091. doi:10.1371/JOURNAL.PONE.0227091
Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of severe asthma research program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280-1288. doi:10.1016/J.JACI.2013.11.042
Hagenaars JA, Mccutcheon AL. Applied Latent Class Analysis. Cambridge University Press; 2002.
MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability Source: Project Euclid Journals - Open Access Supplement 1967.
Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433-459. doi:10.1002/WICS.101
Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1-27. doi:10.1007/BF02289565/METRICS
Cheplygina V, de Bruijne M, Pluim JPW. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal. 2019;54:280-296. doi:10.1016/J.MEDIA.2019.03.009
Yu C, Liu J, Nemati S, Yin G. Reinforcement learning in healthcare: a survey. ACM Comput Surv. 2021;55(1):1-36. doi:10.1145/3477600
Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-1720. doi:10.1038/s41591-018-0213-5
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175. doi:10.1136/BJOPHTHALMOL-2018-313173
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7
Rajpurkar P, Chen E, Banerjee O, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:1-8. doi:10.1038/S41591-021-01614-0
Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141):20170387. doi:10.1098/RSIF.2017.0387
Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-e273. doi:10.1016/S1470-2045(19)30149-4
Jordon J, Szpruch L, Houssiau F, et al. Synthetic data - what, why and how? doi:10.48550/arxiv.2205.03257
Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1-48. doi:10.1186/S40537-019-0197-0/FIGURES/33
Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proc IEEE. 2021;109(1):43-76. doi:10.1109/JPROC.2020.3004555
Bhattacharya S, Hu Z, Butte AJ. Opportunities and challenges in democratizing immunology datasets. Front Immunol. 2021;12:846. doi:10.3389/FIMMU.2021.647536/BIBTEX
Open-access data and computational resources to address COVID-19 | data science at NIH. Accessed December 28, 2022. https://datascience.nih.gov/covid-19-open-access-resources
European health data space. Accessed March 8, 2023. https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en
Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3(1):1-7. doi:10.1038/s41746-020-00323-1
Warnat-Herresthal S, Schultze H, Shastry KL, et al. Swarm learning for decentralized and confidential clinical machine learning. Nature. 2021;594(7862):265-270. doi:10.1038/S41586-021-03583-3
Markus AF, Kors JA, Rijnbeek PR. The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J Biomed Inform. 2021;113:103655. doi:10.1016/J.JBI.2020.103655
High-tech partnership refines artificial intelligence in health care. Accessed December 12, 2022. https://www.nature.com/articles/d43978-022-00127-9
van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal. 2022;79:102470. doi:10.1016/J.MEDIA.2022.102470
Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):1-9. doi:10.1186/S12911-020-01332-6
Nazar M, Alam MM, Yafi E, Su'Ud MM. A systematic review of human-computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. IEEE Access. 2021;9:153316-153348. doi:10.1109/ACCESS.2021.3127881
Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst. 2021;32(11):4793-4813. doi:10.1109/TNNLS.2020.3027314
Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30:4766-4775. doi:10.48550/arxiv.1705.07874
Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session (pp. 97-101) 2016. doi:10.48550/arxiv.1602.04938
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. Proc IEEE Conf Comput Vis Pattern Recognit. 2016;2921-2929.
Kothalawala DM, Murray CS, Simpson A, et al. Development of childhood asthma prediction models using machine learning approaches. Clin Transl Allergy. 2021;11(9):e12076. doi:10.1002/CLT2.12076
Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996;8(7):1341-1390. doi:10.1162/NECO.1996.8.7.1341
Kaur H, Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl Comput Inform. 2002;18:90-100. doi:10.1016/j.aci.2018.12.004
Liu Y, Chen PHC, Krause J, Peng L. How to read articles that use machine learning: users' guides to the medical literature. Jama. 2019;322(18):1806-1816. doi:10.1001/JAMA.2019.16489
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. doi:10.1056/NEJMRA1814259/SUPPL_FILE/NEJMRA1814259_DISCLOSURES.PDF
Patel D, Hall GL, Broadhurst D, Smith A, Schultz A, Foong RE. Does machine learning have a role in the prediction of asthma in children? Paediatr Respir Rev. 2022;41:51-60. doi:10.1016/J.PRRV.2021.06.002
Berisha V, Krantsevich C, Hahn PR, et al. Digital medicine and the curse of dimensionality. NPJ Digit Med. 2021;4(1):1-8. doi:10.1038/s41746-021-00521-5
IBM's Watson recommended “unsafe and incorrect” cancer treatments - STAT. Accessed December 29, 2022. https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/
Ebrahimian S, Kalra MK, Agarwal S, et al. FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol. 2022;29(4):559-566. doi:10.1016/J.ACRA.2021.09.002
Chi S, Tian Y, Wang F, Zhou T, Jin S, Li J. A novel lifelong machine learning-based method to eliminate calibration drift in clinical prediction models. Artif Intell Med. 2022;125:102256. doi:10.1016/J.ARTMED.2022.102256
Price WN, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43. doi:10.1038/s41591-018-0272-7
Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2:e537. doi:10.1136/bmj.m3164
Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health. 2020;2(10):e549-e560. doi:10.1016/S2589-7500(20)30219-3
Plana D, Shung DL, Grimshaw AA, Saraf A, Sung JJY, Kann BH. Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw Open. 2022;5(9):e2233946. doi:10.1001/JAMANETWORKOPEN.2022.33946
Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol. 2023;20220878. doi:10.1259/BJR.20220878
The impact of the general data protection regulation (GDPR) on artificial intelligence | think tank | European Parliament. Accessed March 13, 2023. https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2020)641530
Seastedtid KP, Schwab P, O'brien Z, et al. Global healthcare fairness: we should be sharing more, not less, data. PLOS Digit Health. 2022;1(10):e0000102. doi:10.1371/JOURNAL.PDIG.0000102
Torkzadehmahani R, Nasirigerdeh R, Blumenthal DB, et al. Privacy-preserving artificial intelligence techniques in biomedicine. Methods Inf Med. 2022;61(S 01):E12-E27. doi:10.1055/S-0041-1740630/ID/JR21020001-8
Torfi A, Fox EA, Reddy CK. Differentially private synthetic medical data generation using convolutional GANs. Inf Sci. 2022;586:485-500. doi:10.1016/J.INS.2021.12.018
Jordon J, Yoon J, van der Schaar M. PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees. ICLR; 2019.
Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv. 2021;54(6):1-35. doi:10.1145/3457607
US Food and Drug Administration. Software as a medical device (SaMD) action plan. 2021. Accessed January 2, 2023. www.fda.gov
Cirillo D, Catuara-Solarz S, Morey C, et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ Digit Med. 2020;3(1):1-11. doi:10.1038/s41746-020-0288-5
EPRS | European parliamentary research service. Artificial Intelligence in Healthcare 2022. doi:10.2861/568473
Dael VJ, Ekechi C, Gardner A, et al. Addressing racial and ethnic inequities in data-driven health technologies. 2022;53. doi:10.25561/94902
Santoni De Sio F, Mecacci G, Santoni De Sio F, Mecacci G. Four responsibility gaps with artificial intelligence: why they matter and how to address them. Philos Technol. 2021;34:1057-1084. doi:10.1007/s13347-021-00450-x
Daugherty SL, Blair I, Havranek EP, et al. Implicit gender bias and the use of cardiovascular tests among cardiologists. J Am Heart Assoc. 2017;6(12):e006872. doi:10.1161/JAHA.117.006872
Bradshaw TJ, Boellaard R, Dutta J, et al. Nuclear medicine and artificial intelligence: best practices for algorithm development. J Nucl Med. 2022;63(4):500-510. doi:10.2967/jnumed.121.262567
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51-58. doi:10.7326/M18-1376/SUPPL_FILE/M18-1376_SUPPLEMENT.PDF
Briggs E, Hollmén J. Mitigating discrimination in clinical machine learning decision support using algorithmic processing techniques. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 19-33) 2020. doi:10.1007/978-3-030-61527-7_2/FIGURES/1
Zhang BH, Lemoine B, Mitchell M. Mitigating unwanted biases with adversarial learning. AIES. 2018;18:335-340. doi:10.1145/3278721.3278779
Lee MSA, Singh J. The landscape and gaps in open source fairness toolkits. Conf Hum Factors Comput Syst Proc. 2021;6:1-13. doi:10.1145/3411764.3445261
Bellamy RKE, Mojsilovic A, Nagar S, et al. AI fairness 360: an extensible toolkit for detecting and mitigating algorithmic bias. IBM J Res Dev. 2019;63:1-4. doi:10.1147/JRD.2019.2942287
Doshi-Velez F, Kortz M, Budish R, et al. Accountability of AI under the law: the role of explanation. SSRN Electron J. 2017. doi:10.48550/arxiv.1711.01134
Verdicchio M, Perin A. When doctors and AI interact: on human responsibility for artificial risks. Philos Technol. 2022;35(1):1-28. doi:10.1007/S13347-022-00506-6/METRICS
Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. Bull World Health Organ. 2020;98(4):251. doi:10.2471/BLT.19.237487
Emanuel EJ, Wachter RM. Artificial intelligence in health care: will the value match the hype? Jama. 2019;321(23):2281-2282. doi:10.1001/JAMA.2019.4914
Khoury P, Srinivasan R, Kakumanu S, et al. A framework for augmented intelligence in allergy and immunology practice and research-a work group report of the AAAAI health informatics, technology, and education committee. J Allergy Clin Immunol. 2022;10(5):1178-1188. doi:10.1016/J.JAIP.2022.01.047
Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(195):1-9. doi:10.1186/s12916-019-1426-2
Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell. 2021;3(3):199-217. doi:10.1038/s42256-021-00307-0
Varghese J. Artificial intelligence in medicine: chances and challenges for wide clinical adoption. Visc Med. 2020;36(6):443-449. doi:10.1159/000511930
Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924-933. doi:10.1038/s41591-022-01772-9
Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med. 2020;3(1):126. doi:10.1038/S41746-020-00333-Z
Fontanella S, Cucco A, Custovic A. Machine learning in asthma research: moving toward a more integrated approach. Expert Rev Respir Med. 2021;15(5):609-621. doi:10.1080/17476348.2021.1894133
Duverdier A, Custovic A, Tanaka RJ. Data-driven research on eczema: systematic characterization of the field and recommendations for the future. Clin Transl Allergy. 2022;12(6):e12170. doi:10.1002/CLT2.12170
Nabi FG, Sundaraj K, Lam CK, Palaniappan R. Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features. Comput Biol Med. 2019;104:52-61. doi:10.1016/J.COMPBIOMED.2018.10.035
Seol HY, Rolfes MC, Chung W, et al. Expert artificial intelligence-based natural language processing characterises childhood asthma. BMJ Open Respir Res. 2020;7(1):e000524. doi:10.1136/BMJRESP-2019-000524
van Breugel M, Qi C, Xu Z, et al. Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun. 2022;13(1):1-13. doi:10.1038/s41467-022-35088-6
Wi CI, Sohn S, Ryu E, Liu H, Park MA, Juhn YJ. Automated chart review for asthma ascertainment: an innovative approach for asthma care and research in the era of electronic medical record. J Allergy Clin Immunol. 2016;137(2):AB196. doi:10.1016/j.jaci.2015.12.771
Il WC, Sohn S, Ali M, et al. Natural language processing for asthma ascertainment in different practice settings. J Allergy Clin Immunol Pract. 2018;6(1):126-131. doi:10.1016/J.JAIP.2017.04.041
Jiang Z, Li J, Kong N, et al. Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci Rep. 2022;12(1):290. doi:10.1038/S41598-021-04373-7
Alag A. Machine learning approach yields epigenetic biomarkers of food allergy: a novel 13-gene signature to diagnose clinical reactivity. PloS One. 2019;14(6):e0218253. doi:10.1371/JOURNAL.PONE.0218253
Fontanella S, Frainay C, Murray CS, Simpson A, Custovic A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: a cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018;15(11):e1002691. doi:10.1371/JOURNAL.PMED.1002691
Roberts G, Fontanella S, Selby A, et al. Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. J Allergy Clin Immunol. 2020;146(4):821-830. doi:10.1016/J.JACI.2020.02.031
Toivonen L, Karppinen S, Schuez-Havupalo L, et al. Longitudinal changes in early nasal microbiota and the risk of childhood asthma. Pediatrics. 2020;146(4):20200421. doi:10.1542/PEDS.2020-0421
Spacova I, Petrova MI, Fremau A, et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy. 2019;74(1):100-110. doi:10.1111/ALL.13502
Bose S, Kenyon CC, Masino AJ. Personalized prediction of early childhood asthma persistence: a machine learning approach. PLoS One. 2021;16(3):e0247784. doi:10.1371/JOURNAL.PONE.0247784
Custovic A, Simpson BM, Murray CS, Lowe L, Woodcock A. The national asthma campaign manchester asthma and allergy study. Pediatr Allergy Immunol. 2002;13(s15):32-37. doi:10.1034/J.1399-3038.13.S.15.3.X
Junayed MS, Sakib ANM, Anjum N, Islam MB, Jeny AA. EczemaNet: a deep CNN-based eczema diseases classification. IPAS. 2020;174-179. doi:10.1109/IPAS50080.2020.9334929
Rasheed A, Umar AI, Shirazi SH, Khan Z, Nawaz S, Shahzad M. Automatic eczema classification in clinical images based on hybrid deep neural network. Comput Biol Med. 2022;147:105807. doi:10.1016/J.COMPBIOMED.2022.105807
Kalbande D, Naik R, Jatakia J, Khopkar U. An artificial intelligence approach for the recognition of early stages of eczema. Int J Med Eng Inform. 2020;12(1):52-61. doi:10.1504/IJMEI.2020.105656
Scheurer J, Ferrari C, Berenguer Todo Bom L, Beer M, Kempf W, Haug L. Semantic segmentation of histopathological slides for the classification of cutaneous lymphoma and eczema. Commun Comput Inf Sci. 2020;1248:26-42. doi:10.1007/978-3-030-52791-4_3
Guimarães P, Batista A, Zieger M, Kaatz M, Koenig K. Artificial intelligence in multiphoton tomography: atopic dermatitis diagnosis. Sci Rep. 2020;10(1):7968. doi:10.1038/S41598-020-64937-X
Newson RB, Van Ree R, Forsberg B, et al. Geographical variation in the prevalence of sensitization to common aeroallergens in adults: the GA2LEN survey. Allergy. 2014;69(5):643-651. doi:10.1111/ALL.12397
Davis CM, Apter AJ, Casillas A, et al. Health disparities in allergic and immunologic conditions in racial and ethnic underserved populations: a work group report of the AAAAI committee on the underserved. J Allergy Clin Immunol. 2021;147(5):1579-1593. doi:10.1016/J.JACI.2021.02.034
Cerrato P, Halamka J, Pencina M. A proposal for developing a platform that evaluates algorithmic equity and accuracy. BMJ Health Care Inform. 2022;29(1):100423. doi:10.1136/BMJHCI-2021-100423
Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: a review. Neural Netw. 2019;113:54-71. doi:10.1016/j.neunet.2019.01.012
Finkelstein J, Jeong I. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y Acad Sci. 2017;1387(1):153. doi:10.1111/NYAS.13218
Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med. 2018;36(9):1650-1654. doi:10.1016/J.AJEM.2018.06.062
Patel SJ, Chamberlain DB, Chamberlain JM. A machine learning approach to predicting need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad Emerg Med. 2018;25(12):1463-1470. doi:10.1111/ACEM.13655
Zein JG, Wu CP, Attaway AH, Zhang P, Nazha A. Novel machine learning can predict acute asthma exacerbation. Chest. 2021;159(5):1747-1757. doi:10.1016/J.CHEST.2020.12.051
Loymans RJB, Debray TPA, Honkoop PJ, et al. Exacerbations in adults with asthma: a systematic review and external validation of prediction models. J Allergy Clin Immunol Pract. 2018;6(6):1942-1952.e15. doi:10.1016/J.JAIP.2018.02.004
Zhang O, Minku LL, Gonem S. Detecting asthma exacerbations using daily home monitoring and machine learning. J Asthma. 2021;58(11):1518-1527. doi:10.1080/02770903.2020.1802746
Juhn Y, Wi CI, Sohn S, et al. Asthma-guidance and prediction system (a-GPS) as a precision asthma care tool. J Allergy Clin Immunol. 2020;145(2):AB210. doi:10.1016/j.jaci.2019.12.231
Seol HY, Shrestha P, Muth JF, et al. Artificial intelligence-assisted clinical decision support for childhood asthma management: a randomized clinical trial. PloS One. 2021;16(8):e0255261. doi:10.1371/JOURNAL.PONE.0255261
Lugogo NL, DePietro M, Reich M, et al. A predictive machine learning tool for asthma exacerbations: results from a 12-week, open-label study using an electronic multi-dose dry powder inhaler with integrated sensors. J Asthma Allergy. 2022;15:1623-1637. doi:10.2147/JAA.S377631
Bousquet J, Grattan CE, Akdis CA, et al. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy. 2020;10(1):1-11. doi:10.1186/S13601-020-00366-3/METRICS
Baiardini I, Novakova S, Mihaicuta S, Oguzulgen IK, Canonica GW. Adherence to treatment in allergic respiratory diseases. Expert Rev Respir Med. 2018;13(1):53-62. doi:10.1080/17476348.2019.1554438
Bohlmann A, Mostafa J, Kumar M. Machine learning and medication adherence: scoping review. JMIRx Med. 2021;2(4):e26993. doi:10.2196/26993
Tsang KCH, Pinnock H, Wilson AM, Ahmar SS. Application of machine learning to support self-management of asthma with mHealth. Proc Ann Int Conf IEEE Eng Med Biol Soc. 2020;2020:5673-5677. doi:10.1109/EMBC44109.2020.9175679
Chaix B, Bibault JE, Pienkowski A, et al. When chatbots meet patients: one-year prospective study of conversations between patients With breast cancer and a chatbot. JMIR Cancer. 2019;5(1):e12856. doi:10.2196/12856
Kadariya D, Venkataramanan R, Yip HY, Kalra M, Thirunarayanan K, Sheth A. KBot: knowledge-enabled personalized chatbot for asthma self-management. Proc IEEE Int Conf Smart Comput SMARTCOMP. 2019;138-143. doi:10.1109/SMARTCOMP.2019.00043
Tsang KCH, Pinnock H, Wilson AM, Shah SA. Application of machine learning algorithms for asthma management with mHealth: a clinical review. J Asthma Allergy. 2022;15:855-873. doi:10.2147/JAA.S285742
Shim J, Kim M, Lee SM, et al. An artificial intelligence algorithm-based smartphone application for daily cough monitoring. Allergy. 2023;78:1378-1380. doi:10.1111/ALL.15632
Fakotakis ND, Nousias S, Arvanitis G, Zacharaki EI, Moustakas K. Revisiting audio pattern recognition for asthma medication adherence: evaluation with the RDA benchmark suite. 2022. Accessed January 9, 2023. https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark
Alam MZ, Simonetti A, Brillantino R, et al. Predicting pulmonary function from the analysis of voice: a machine learning approach. Front Digit Health. 2022;4:750226. doi:10.3389/FDGTH.2022.750226/FULL
Azari E, Renard H, Lauthier JB, et al. A laboratory evaluation of the new automated Pollen sensor Beenose: pollen discrimination using machine learning techniques. Sensors. 2023;23(6):2964. doi:10.3390/S23062964
Ambee Pollen API. Real-time and forecast pollen count data. Accessed June 20, 2023. https://www.getambee.com/api/pollen
Oteros J, Pusch G, Weichenmeier I, et al. Automatic and online Pollen monitoring. Int Arch Allergy Immunol. 2015;167(3):158-166. doi:10.1159/000436968
Zewdie GK, Liu X, Wu D, Lary DJ, Levetin E. Applying machine learning to forecast daily ambrosia pollen using environmental and NEXRAD parameters. Environ Monit Assess. 2019;191(2):1-11. doi:10.1007/S10661-019-7428-X/METRICS
Cordero JM, Rojo J, Gutiérrez-Bustillo AM, Narros A, Borge R. Predicting the Olea pollen concentration with a machine learning algorithm ensemble. Int J Biometeorol. 2021;65(4):541-554. doi:10.1007/S00484-020-02047-Z/METRICS
Kuruvilla ME, Lee EH, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56:219-233. doi:10.1007/s12016-018-8712-1
Henderson J, Granell R, Heron J, et al. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax. 2008;63(11):974-980. doi:10.1136/thx.2007.093187
Granell R, Sterne J, Savenije O, et al. Identification and replication of wheezing phenotypes using longitudinal latent class analysis. Am Thorac Soc. 2010;2010:A6242. doi:10.1164/ajrccm-conference.2010.181.1_MeetingAbstracts.A6242
Belgrave DCM, Simpson A, Semic-Jusufagic A, et al. Joint modeling of parentally reported and physician-confirmed wheeze identifies children with persistent troublesome wheezing. J Allergy Clin Immunol. 2013;132(3):575-583. doi:10.1016/j.jaci.2013.05.041
Sordillo JE, Coull BA, Rifas-Shiman SL, et al. Characterization of longitudinal wheeze phenotypes from infancy to adolescence in project viva, a prebirth cohort study. J Allergy Clin Immunol. 2020;145(2):716-719 e8. doi:10.1016/j.jaci.2019.10.026
Hallmark B, Wegienka G, Havstad S, et al. Chromosome 17q12-21 variants are associated with multiple wheezing phenotypes in childhood. Am J Respir Crit Care Med. 2021;203(7):864-870. doi:10.1164/rccm.202003-0820OC
Odling M, Wang G, Andersson N, et al. Characterization of asthma trajectories from infancy to young adulthood. J Allergy Clin Immunol Pract. 2021;9(6):2368-2376. doi:10.1016/j.jaip.2021.02.007
Savenije OE, Granell R, Caudri D, et al. Comparison of childhood wheezing phenotypes in 2 birth cohorts: ALSPAC and PIAMA. J Allergy Clin Immunol. 2011;127(6):1505.
Belgrave D, Simpson A, Custovic A. Challenges in interpreting wheeze phenotypes: the clinical implications of statistical learning techniques. Am J Respir Crit Care Med. 2014;189(2):121-123. doi:10.1164/rccm.201312-2206ED
Saria S, Goldenberg A. Subtyping: what it is and its role in precision medicine. IEEE Intell Syst. 2015;30(4):70-75.
Saglani S, Custovic A. Childhood asthma: advances using machine learning and mechanistic studies. Am J Respir Crit Care Med. 2019;199(4):414-422. doi:10.1164/rccm.201810-1956CI
Oksel C, Granell R, Mahmoud O, et al. Causes of variability in latent phenotypes of childhood wheeze. J Allergy Clin Immunol. 2019;143(5):1783-1790. doi:10.1016/j.jaci.2018.10.059
Oksel C, Granell R, Haider S, et al. Distinguishing wheezing phenotypes from infancy to adolescence. A pooled analysis of five birth cohorts. Ann Am Thorac Soc. 2019;16(7):868-876. doi:10.1513/AnnalsATS.201811-837OC
Haider S, Granell R, Curtin J, et al. Modeling wheezing spells identifies phenotypes with different outcomes and genetic associates. Am J Respir Crit Care Med. 2022;205(8):883-893. doi:10.1164/rccm.202108-1821OC
Haider S, Custovic A. Breaking Down Silos in Asthma Research: the Case for an Integrated Approach. Innovations 2019.
McCready C, Haider S, Little F, et al. Early childhood wheezing phenotypes and determinants in a south African birth cohort: longitudinal analysis of the Drakenstein child health study. Lancet Child Adolesc Health. 2023;7(2):127-135. doi:10.1016/S2352-4642(22)00304-2
Hu C, Duijts L, Erler NS, et al. Most associations of early-life environmental exposures and genetic risk factors poorly differentiate between eczema phenotypes: the generation R study. Br J Dermatol. 2019;181(6):1190-1197. doi:10.1111/bjd.17879
Lopez DJ, Lodge CJ, Bui DS, et al. Establishing subclasses of childhood eczema, their risk factors and prognosis. Clin Exp Allergy. 2022;52(9):1079-1090. doi:10.1111/cea.14139
Mulick AR, Mansfield KE, Silverwood RJ, et al. Four childhood atopic dermatitis subtypes identified from trajectory and severity of disease and internally validated in a large UK birth cohort. Br J Dermatol. 2021;185(3):526-536. doi:10.1111/bjd.19885
Paternoster L, Savenije OEM, Heron J, et al. Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. J Allergy Clin Immunol. 2018;141(3):964-971. doi:10.1016/j.jaci.2017.09.044
Nakamura T, Haider S, Fontanella S, Murray CS, Simpson A, Custovic A. Modelling trajectories of parentally reported and physician-confirmed atopic dermatitis in a birth cohort study. Br J Dermatol. 2022;186(2):274-284. doi:10.1111/bjd.20767
Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir Crit Care Med. 2014;189(2):129-138. doi:10.1164/rccm.201307-1198OC
Suaini NHA, Yap GC, Bui DPT, et al. Atopic dermatitis trajectories to age 8 years in the GUSTO cohort. Clin Exp Allergy. 2021;51(9):1195-1206. doi:10.1111/cea.13993
Ziyab AH, Mukherjee N, Zhang H, Arshad SH, Karmaus W. Sex-specific developmental trajectories of eczema from infancy to age 26 years: a birth cohort study. Clin Exp Allergy. 2022;52(3):416-425. doi:10.1111/cea.14068
Belgrave DC, Granell R, Simpson A, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11(10):e1001748. doi:10.1371/journal.pmed.1001748
Clark H, Granell R, Curtin JA, et al. Differential associations of allergic disease genetic variants with developmental profiles of eczema, wheeze and rhinitis. Clin Exp Allergy. 2019;49(11):1475-1486. doi:10.1111/cea.13485
Howard R, Rattray M, Prosperi M, Custovic A. Distinguishing asthma phenotypes using machine learning approaches. Curr Allergy Asthma Rep. 2015;15(7):1-10. doi:10.1007/S11882-015-0542-0
Lazic N, Roberts G, Custovic A, et al. Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy. 2013;68(6):764-770. doi:10.1111/ALL.12134
Krautenbacher N, Flach N, Böck A, et al. A strategy for high-dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy. 2019;74(7):1364. doi:10.1111/ALL.13745
Mersha TB, Afanador Y, Johansson E, et al. Resolving clinical phenotypes into endotypes in allergy: molecular and omics approaches. Clin Rev Allergy Immunol. 2021;60(2):200-219. doi:10.1007/S12016-020-08787-5/FIGURES/6
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1-12. doi:10.1016/J.JACI.2019.05.031
Wu W, Bang S, Bleecker ER, et al. Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma. Am J Respir Crit Care Med. 2019;199(11):1358-1367. doi:10.1164/RCCM.201808-1543OC/SUPPL_FILE/DISCLOSURES.PDF
Meng Y, Lou H, Wang Y, et al. Endotypes of chronic rhinitis: a cluster analysis study. Allergy. 2019;74(4):720-730. doi:10.1111/ALL.13640
Malizia V, Cilluffo G, Fasola S, et al. Endotyping allergic rhinitis in children: a machine learning approach. Pediatr Allergy Immunol. 2022;33(S27):18-21. doi:10.1111/PAI.13620
Robinson PFM, Fontanella S, Ananth S, et al. Recurrent severe preschool wheeze: from prespecified diagnostic labels to underlying endotypes. Am J Respir Crit Care Med. 2021;204(5):523-535. doi:10.1164/rccm.202009-3696OC
Ooka T, Raita Y, Fujiogi M, et al. Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma. Allergy. 2022;77(11):3350-3361. doi:10.1111/ALL.15390
Tyler SR, Chun Y, Ribeiro VM, et al. Merged affinity network association clustering: joint multi-omic/clinical clustering to identify disease endotypes. Cell Rep. 2021;35(2):108975. doi:10.1016/J.CELREP.2021.108975
Azim A, Rezwan FI, Barber C, et al. Measurement of exhaled volatile organic compounds as a biomarker for personalised medicine: assessment of short-term repeatability in severe asthma. J Pers Med. 2022;12(10):1635. doi:10.3390/JPM12101635/S1
Han X, Krempski JW, Nadeau K, Parker SN, Kari NC. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020;75(12):3100-3111. doi:10.1111/ALL.14632
Sikkema L, Ramírez-Suástegui C, Strobl DC, et al. An integrated cell atlas of the lung in health and disease. Nat Med. 2023;29(6):1563-1577. doi:10.1038/s41591-023-02327-2
Lotfollahi M, Naghipourfar M, Luecken MD, et al. Mapping single-cell data to reference atlases by transfer learning. Nat Biotechnol. 2022;40(1):121-130. doi:10.1038/S41587-021-01001-7
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial intelligence in drug discovery: a comprehensive review of data-driven and machine learning approaches. Biotechnol Bioprocess Eng. 2020;25(6):895. doi:10.1007/S12257-020-0049-Y
Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy. 2019;74(9):1649-1659. doi:10.1111/ALL.13771
Radzikowska U, Baerenfaller K, Cornejo-Garcia JA, et al. Omics technologies in allergy and asthma research: an EAACI position paper. Allergy Eur J Allergy Clin Immunol. 2022;77(10):2888-2908. doi:10.1111/ALL.15412
Ahmed Z, Mohamed K, Zeeshan S, Dong XQ. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020;2020:baaa010. doi:10.1093/DATABASE/BAAA010
Lovrić M, Banić I, Lacić E, Pavlović K, Kern R, Turkalj M. Predicting treatment outcomes using explainable machine learning in children with asthma. Children (Basel). 2021;8(5):376. doi:10.3390/CHILDREN8050376
Wu JJ, Hong C, Merola JF, et al. Predictors of nonresponse to dupilumab in patients with atopic dermatitis: a machine learning analysis. Ann Allergy Asthma Immunol. 2022;129(3):354-359.e5. doi:10.1016/J.ANAI.2022.05.025
Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: complementing existing clinical practice with modern machine learning. Cell Rep Med. 2022;3(12):100857. doi:10.1016/J.XCRM.2022.100857
Tanoli Z, Vähä-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. 2021. doi:10.1080/17460441.2021.1883585
Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947-1999. doi:10.1007/S10462-021-10058-4/TABLES/2
Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K, Tylkowski B. Machine learning in drug design: use of artificial intelligence to explore the chemical structure-biological activity relationship. Wiley Interdiscip Rev Comput Mol Sci. 2022;12(2):e1568. doi:10.1002/WCMS.1568
Issa NT, Stathias V, Schürer S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. 2021;68:132. doi:10.1016/J.SEMCANCER.2019.12.011
Abdulla A, Wang B, Qian F, et al. Project IDentif.AI: harnessing artificial intelligence to rapidly optimize combination therapy development for infectious disease intervention. Adv Ther (Weinh). 2020;3:2000034. doi:10.1002/ADTP.202000034
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784-790. doi:10.1016/J.CSBJ.2020.03.025
Patrick MT, Raja K, Miller K, et al. Drug repurposing prediction for immune-mediated cutaneous diseases using a word-embedding based machine learning approach. J Invest Dermatol. 2019;139(3):683. doi:10.1016/J.JID.2018.09.018
Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577-591. doi:10.1016/J.TIPS.2019.05.005
He H, Liu B, Luo H, Zhang T, Jiang J. Big data and artificial intelligence discover novel drugs targeting proteins without 3D structure and overcome the undruggable targets. Stroke Vasc Neurol. 2020;5:323. doi:10.1136/svn-2019-000323
Rodrigues T, Bernardes GJL. Machine learning for target discovery in drug development. Curr Opin Chem Biol. 2019;2020:16-22. doi:10.1016/j.cbpa.2019.10.003
Liu B, He H, Luo H, Zhang T, Jiang J. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc Neurol. 2019;4:290. doi:10.1136/svn-2019-000290
FDA. Good machine learning practice for medical device development: guiding principles. Accessed January 3, 2023. https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
Sounderajah V, Ashrafian H, Golub RM, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021;11(6):e047709. doi:10.1136/BMJOPEN-2020-047709
Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73. doi:10.7326/M14-0698
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e048008. doi:10.1136/BMJOPEN-2020-048008
AI and NLP. Autoscriber is helping healthcare professionals better care for the patient. Accessed January 25, 2023. https://www.ai.nl/artificial-intelligence/with-ai-and-nlp-autoscriber-is-helping-healthcare-professionals-better-care-for-the-patient/
Regulatory framework proposal on artificial intelligence | Shaping Europe's digital future. Accessed January 11, 2023. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
Legislation Related to Artificial Intelligence. Accessed January 11, 2023. https://www.ncsl.org/technology-and-communication/legislation-related-to-artificial-intelligence
Eczema App. Eczema signs and symptoms, eczema skin infection. Accessed June 22, 2023. https://eczemaless.com/
Ventura MT, Giuliano AFM, Buquicchio R, et al. Implementation of the MASK-air® App for rhinitis and asthma in older adults: MASK@Puglia pilot study. Int Arch Allergy Immunol. 2022;183(1):45-50. doi:10.1159/000518032
MASK-air. Accessed June 22, 2023. https://www.mask-air.com/
Sabry F, Eltaras T, Labda W, Alzoubi K, Malluhi Q. Machine learning for healthcare wearable devices: the big picture. J Healthc Eng. 2022;2022:4653923. doi:10.1155/2022/4653923
Greiwe J, Nyenhuis SM. Wearable technology and how this can Be implemented into clinical practice. Curr Allergy Asthma Rep. 2020;20(8):36. doi:10.1007/S11882-020-00927-3
Lee CS, Lee AY. Clinical applications of continual learning machine learning. Lancet Digit Health. 2020;2(6):e279-e281. doi:10.1016/S2589-7500(20)30102-3
Vokinger KN, Feuerriegel S, Kesselheim AS. Continual learning in medical devices: FDA's action plan and beyond. Lancet Digit Health. 2021;3(6):e337-e338. doi:10.1016/S2589-7500(21)00076-5
Lekadir K, Osuala R, Gallin C, et al. FUTURE-AI: guiding principles and consensus recommendations for trustworthy artificial intelligence in medical imaging. 2021. doi:10.48550/arxiv.2109.09658
Norgeot B, Quer G, Beaulieu-Jones BK, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020;26(9):1320-1324. doi:10.1038/S41591-020-1041-Y
Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH. MINIMAR (MINimum information for medical AI reporting): developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc. 2020;27(12):2011-2015. doi:10.1093/JAMIA/OCAA088

Auteurs

Merlijn van Breugel (M)

Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
MIcompany, Amsterdam, the Netherlands.

Rudolf S N Fehrmann (RSN)

Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

Marnix Bügel (M)

MIcompany, Amsterdam, the Netherlands.

Faisal I Rezwan (FI)

Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Department of Computer Science, Aberystwyth University, Aberystwyth, UK.

John W Holloway (JW)

Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK.

Martijn C Nawijn (MC)

Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

Sara Fontanella (S)

National Heart and Lung Institute, Imperial College London, London, UK.
National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK.

Adnan Custovic (A)

National Heart and Lung Institute, Imperial College London, London, UK.
National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK.

Gerard H Koppelman (GH)

Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH