Novel targets of β-TrCP cooperatively accelerate carbohydrate and fatty acid consumption.

E3 ligase energy homeostasis metabolism obesity ubiquitination β-TrCP

Journal

Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222

Informations de publication

Date de publication:
16 Aug 2023
Historique:
revised: 29 06 2023
received: 10 03 2023
accepted: 25 07 2023
medline: 16 8 2023
pubmed: 16 8 2023
entrez: 16 8 2023
Statut: aheadofprint

Résumé

Cellular energy is primarily produced from glucose and fat through glycolysis and fatty acid oxidation (FAO) followed by the tricarboxylic acid cycle in mitochondria; energy homeostasis is carefully maintained via numerous feedback pathways. In this report, we uncovered a new master regulator of carbohydrate and lipid metabolism. When ubiquitin E3 ligase β-TrCP2 was inducibly knocked out in β-TrCP1 knockout adult mice, the resulting double knockout mice (DKO) lost fat mass rapidly. Biochemical analyses of the tissues and cells from β-TrCP2 KO and DKO mice revealed that glycolysis, FAO, and lipolysis were dramatically upregulated. The absence of β-TrCP2 increased the protein stability of metabolic rate-limiting enzymes including 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase 1A (CPT1A), and carnitine/acylcarnitine translocase (CACT). Our data suggest that β-TrCP is a potential regulator for total energy homeostasis by simultaneously controlling glucose and fatty acid metabolism and that targeting β-TrCP could be an effective strategy to treat obesity and other metabolic disorders.

Identifiants

pubmed: 37584358
doi: 10.1002/jcp.31095
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM131283
Pays : United States

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Bi, L., Jiang, Z., & Zhou, J. (2015). The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol and Alcoholism, 50(2), 146-151. https://doi.org/10.1093/alcalc/agu102
Bi, Y., Cui, D., Xiong, X., & Zhao, Y. (2021). The characteristics and roles of β-TrCP1/2 in carcinogenesis. The FEBS journal, 288(11), 3351-3374. https://doi.org/10.1111/febs.15585
Cerk, I. K., Wechselberger, L., & Oberer, M. (2017). Adipose triglyceride lipase regulation: An overview. Current Protein & Peptide Science, 19(2), 221-233. https://doi.org/10.2174/1389203718666170918160110
Cheng, Q., Yuan, Y., Li, L., Guo, T., Miao, Y., Ren, Y., Liu, J., Feng, Q., Wang, X., Zhao, P., Zuo, Y., Qian, L., Zhang, L., & Zheng, H. (2017). Deubiquitinase USP33 is negatively regulated by β-TrCP through ubiquitin-dependent proteolysis. Experimental Cell Research, 356(1), 1-7. https://doi.org/10.1016/j.yexcr.2017.05.011
Cui, D., Dai, X., Shu, J., Ma, Y., Wei, D., Xiong, X., & Zhao, Y. (2020). The cross talk of two family members of β-TrCP in the regulation of cell autophagy and growth. Cell Death & Differentiation, 27(3), 1119-1133. https://doi.org/10.1038/s41418-019-0402-x
Finck, B. N., Gropler, M. C., Chen, Z., Leone, T. C., Croce, M. A., Harris, T. E., Lawrence, J. C., & Kelly, D. P. (2006). Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metabolism, 4(3), 199-210. https://doi.org/10.1016/j.cmet.2006.08.005
Ghosh, M., Niyogi, S., Bhattacharyya, M., Adak, M., Nayak, D. K., Chakrabarti, S., & Chakrabarti, P. (2016). Ubiquitin ligase COP1 controls hepatic fat metabolism by targeting ATGL for degradation. Diabetes, 65(12), 3561-3572. https://doi.org/10.2337/db16-0506
Guardavaccaro, D., Kudo, Y., Boulaire, J., Barchi, M., Busino, L., Donzelli, M., Margottin-Goguet, F., Jackson, P. K., Yamasaki, L., & Pagano, M. (2003). Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Developmental Cell, 4(6), 799-812. https://doi.org/10.1016/s1534-5807(03)00154-0
Huo, Y., Guo, X., Li, H., Xu, H., Halim, V., Zhang, W., Wang, H., Fan, Y. Y., Ong, K. T., Woo, S. L., Chapkin, R. S., Mashek, D. G., Chen, Y., Dong, H., Lu, F., Wei, L., & Wu, C. (2012). Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses. Journal of Biological Chemistry, 287(25), 21492-21500. https://doi.org/10.1074/jbc.M112.370379
Jiao, L., Zhang, H. L., Li, D. D., Yang, K. L., Tang, J., Li, X., Ji, J., Yu, Y., Wu, R. Y., Ravichandran, S., Liu, J. J., Feng, G. K., Chen, M. S., Zeng, Y. X., Deng, R., & Zhu, X. F. (2018). Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy, 14(4), 671-684. https://doi.org/10.1080/15548627.2017.1381804
Kanemori, Y., Uto, K., & Sagata, N. (2005). β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proceedings of the National Academy of Sciences, 102(18), 6279-6284. https://doi.org/10.1073/pnas.0501873102
Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A., & Smas, C. M. (2006). The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ. American Journal of Physiology-Endocrinology and Metabolism, 291(1), E115-E127. https://doi.org/10.1152/ajpendo.00317.2005
Latres, E., Chiaur, D. S., & Pagano, M. (1999). The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene, 18(4), 849-854. https://doi.org/10.1038/sj.onc.1202653
Liu, C. Y., Zha, Z. Y., Zhou, X., Zhang, H., Huang, W., Zhao, D., Li, T., Chan, S. W., Lim, C. J., Hong, W., Zhao, S., Xiong, Y., Lei, Q. Y., & Guan, K. L. (2010). The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. Journal of Biological Chemistry, 285(48), 37159-37169. https://doi.org/10.1074/jbc.M110.152942
Loveless, T. B., Topacio, B. R., Vashisht, A. A., Galaang, S., Ulrich, K. M., Young, B. D., Wohlschlegel, J. A., & Toczyski, D. P. (2015). DNA damage regulates translation through β-TRCP targeting of CReP. PLoS Genetics, 11(6), e1005292. https://doi.org/10.1371/journal.pgen.1005292
Meier, U., & Gressner, A. M. (2004). Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clinical Chemistry, 50(9), 1511-1525. https://doi.org/10.1373/clinchem.2004.032482
Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2), 355-382. https://doi.org/10.1152/physrev.00030.2013
Nakayama, K. I., & Nakayama, K. (2006). Ubiquitin ligases: Cell-cycle control and cancer. Nature Reviews Cancer, 6(5), 369-381. https://doi.org/10.1038/nrc1881
Nemoto, S., Fergusson, M. M., & Finkel, T. (2004). Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science, 306(5704), 2105-2108. https://doi.org/10.1126/science.1101731
Pedersen, S. B., Ølholm, J., Paulsen, S. K., Bennetzen, M. F., & Richelsen, B. (2008). Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. International Journal of Obesity, 32(8), 1250-1255. https://doi.org/10.1038/ijo.2008.78
Phan, J., & Reue, K. (2005). Lipin, a lipodystrophy and obesity gene. Cell Metabolism, 1(1), 73-83. https://doi.org/10.1016/j.cmet.2004.12.002
Qi, L., Heredia, J. E., Altarejos, J. Y., Screaton, R., Goebel, N., Niessen, S., MacLeod, I. X., Liew, C. W., Kulkarni, R. N., Bain, J., Newgard, C., Nelson, M., Evans, R. M., Yates, J., & Montminy, M. (2006). TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science, 312(5781), 1763-1766. https://doi.org/10.1126/science.1123374
Shimizu, K., Fukushima, H., Ogura, K., Lien, E. C., Nihira, N. T., Zhang, J., North, B. J., Guo, A., Nagashima, K., Nakagawa, T., Hoshikawa, S., Watahiki, A., Okabe, K., Yamada, A., Toker, A., Asara, J. M., Fukumoto, S., Nakayama, K. I., Nakayama, K., … Wei, W. (2017). The SCFβ-TRCPE3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Science Signaling, 10(460), eaah4117. https://doi.org/10.1126/scisignal.aah4117
Sun, T., Liu, Z., & Yang, Q. (2020). The role of ubiquitination and deubiquitination in cancer metabolism. Molecular cancer, 19(1), 146. https://doi.org/10.1186/s12943-020-01262-x
Tekcham, D. S., Chen, D., Liu, Y., Ling, T., Zhang, Y., Chen, H., Wang, W., Otkur, W., Qi, H., Xia, T., Liu, X., Piao, H., & Liu, H. (2020). F-box proteins and cancer: An update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics, 10(9), 4150-4167. https://doi.org/10.7150/thno.42735
Tudzarova, S., Colombo, S. L., Stoeber, K., Carcamo, S., Williams, G. H., & Moncada, S. (2011). Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-β-TrCP, sequentially regulate glycolysis during the cell cycle. Proceedings of the National Academy of Sciences, 108(13), 5278-5283. https://doi.org/10.1073/pnas.1102247108
Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H., & Sul, H. S. (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids. Journal of Biological Chemistry, 279(45), 47066-47075. https://doi.org/10.1074/jbc.M403855200
Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T., & Osada, H. (2004). M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proceedings of the National Academy of Sciences, 101(13), 4419-4424. https://doi.org/10.1073/pnas.0307700101
Woo, S. R., Byun, J. G., Kim, Y. H., Park, E. R., Joo, H. Y., Yun, M., Shin, H. J., Kim, S. H., Shen, Y. N., Park, J. E., Park, G. H., & Lee, K. H. (2013). SIRT1 suppresses cellular accumulation of β-TrCP E3 ligase via protein degradation. Biochemical and Biophysical Research Communications, 441(4), 831-837. https://doi.org/10.1016/j.bbrc.2013.10.146
Xu, J., Ji, J., & Yan, X. H. (2012). Cross-talk between AMPK and mTOR in regulating energy balance. Critical Reviews in Food Science and Nutrition, 52(5), 373-381. https://doi.org/10.1080/10408398.2010.500245
Yalcin, A., Telang, S., Clem, B., & Chesney, J. (2009). Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Experimental and Molecular Pathology, 86(3), 174-179. https://doi.org/10.1016/j.yexmp.2009.01.003
Yoshino, S., Hara, T., Nakaoka, H. J., Kanamori, A., Murakami, Y., Seiki, M., & Sakamoto, T. (2016). The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discovery, 2, 16019. https://doi.org/10.1038/celldisc.2016.19
Zhang, C., Liu, J., Huang, G., Zhao, Y., Yue, X., Wu, H., Li, J., Zhu, J., Shen, Z., Haffty, B. G., Hu, W., & Feng, Z. (2016). Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes & Development, 30(17), 1956-1970. https://doi.org/10.1101/gad.283283.116
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y., & Guan, K. L. (2010). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes & Development, 24(1), 72-85. https://doi.org/10.1101/gad.1843810

Auteurs

Hyun Jeong Joo (HJ)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.

Matthew D'Alessandro (M)

Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.

Gaeun Oh (G)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Sora Han (S)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Woo Jung Kim (WJ)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Ga Eun Chung (GE)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Youjeong Jang (Y)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Jung Bok Lee (JB)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Choogon Lee (C)

Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.

Young Yang (Y)

Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.

Classifications MeSH