ALKBH5-Mediated RNA m


Journal

Arthritis & rheumatology (Hoboken, N.J.)
ISSN: 2326-5205
Titre abrégé: Arthritis Rheumatol
Pays: United States
ID NLM: 101623795

Informations de publication

Date de publication:
16 Aug 2023
Historique:
revised: 27 06 2023
received: 24 12 2022
accepted: 09 08 2023
pubmed: 16 8 2023
medline: 16 8 2023
entrez: 16 8 2023
Statut: aheadofprint

Résumé

Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m Our findings suggest that ALKBH5-mediated m

Identifiants

pubmed: 37584615
doi: 10.1002/art.42676
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fundamental Research Funds for the Central Universities of China
ID : 17ykjc07
Organisme : Fundamental Research Funds for the Central Universities of China
ID : 19ykpy59
Organisme : Guangzhou Science and Technology Project
ID : 201803010042
Organisme : National Natural Science Foundation of China
ID : 81373182
Organisme : National Natural Science Foundation of China
ID : 81501389
Organisme : National Natural Science Foundation of China
ID : 81671591
Organisme : National Natural Science Foundation of China
ID : 81871275
Organisme : National Natural Science Foundation of China
ID : 82071831
Organisme : National Natural Science Foundation of China
ID : U1401222
Organisme : Guangdong Basic and Applied Basic Research Foundation
ID : 2020-A-1515010221
Organisme : Guangdong Basic and Applied Basic Research Foundation
ID : 2021-A-1515010535

Informations de copyright

© 2023 American College of Rheumatology.

Références

Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis [review]. J Autoimmun 2020;110:102400.
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions [review]. Nat Rev Rheumatol 2022;18:415-429.
You S, Koh JH, Leng L, et al. The tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine [review]. Arthritis Rheumatol 2018;70:637-652.
Zhang F, Wei K, Slowikowski K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 2019;20:928-942.
Croft AP, Campos J, Jansen K, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 2019;570:246-251.
Mizoguchi F, Slowikowski K, Wei K, et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 2018;9:789.
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors [review]. Nat Rev Rheumatol 2013;9:24-33.
Li X, Ma S, Deng Y, et al. Targeting the RNA m6A modification for cancer immunotherapy [review]. Mol Cancer 2022;21:76.
Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers [review]. Annu Rev Cell Dev Biol 2017;33:319-342.
Huang W, Chen TQ, Fang K, et al. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential [review]. J Hematol Oncol 2021;14:117.
Zhang B, Jiang H, Wu J, et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther 2021;6:377.
Yang Y, Cai J, Yang X, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 2022;30:2342-2353.
Uddin MB, Wang Z, Yang C. The m6A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis [review]. Mol Cancer 2021;20:61.
Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 2021;12:1394.
Luo Q, Gao Y, Zhang L, et al. Decreased ALKBH5, FTO, and YTHDF2 in peripheral blood are as risk factors for rheumatoid arthritis. Biomed Res Int 2020;2020:5735279.
Mo XB, Zhang YH, Lei SF. Genome-wide identification of N(6)-methyladenosine (m(6)A) SNPs associated with rheumatoid arthritis. Front Genet 2018;9:299.
Shi W, Zheng Y, Luo S, et al. METTL3 promotes activation and inflammation of FLSs through the NF-κB signaling pathway in rheumatoid arthritis. Front Med (Lausanne) 2021;8:607585.
Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010;62:2569-2581.
Shi M, Wang J, Xiao Y, et al. Glycogen metabolism and rheumatoid arthritis: the role of glycogen synthase 1 in regulation of synovial inflammation via blocking AMP-activated protein kinase activation. Front Immunol 2018;9:1714.
Li G, Kolan SS, Guo S, et al. Activated, pro-inflammatory Th1, Th17, and memory CD4+ T cells and B cells are involved in delayed-type hypersensitivity arthritis (DTHA) inflammation and paw swelling in mice. Front Immunol 2021;12:689057.
Atkinson SM, Usher PA, Kvist PH, et al. Establishment and characterization of a sustained delayed-type hypersensitivity model with arthritic manifestations in C57BL/6J mice. Arthritis Res Ther 2012;14:R134.
Zhang S, Zhao BS, Zhou A, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017;31:591-606.
Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015;16:289-301.
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 2017;31:127-141.
Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018;20:285-295.
Escobar TM, Kanellopoulou C, Kugler DG, et al. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 2014;40:865-879.
Deng LJ, Deng WQ, Fan SR, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond [review]. Mol Cancer 2022;21:52.
Huang X, Lv D, Yang X, et al. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med 2020;24:12706-12715.
Shen C, Sheng Y, Zhu AC, et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 2020;27:64-80.
Wu Y, Wang Z, Han L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther 2022;30:2603-2617.
Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 2020;19:91.
Chen Y, Zhao Y, Chen J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol Cancer 2020;19:123.
Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer 2020;19:40.
Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer 2022;21:34.
Healy E, Mucha M, Glancy E, et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol Cell 2019;76:437-452.e6.
Petracovici A, Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol Cell 2021;81:2625-2639.e5.
Meng TG, Zhou Q, Ma XS, et al. PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome. Nat Commun 2020;11:6354.
Celik H, Koh WK, Kramer AC, et al. JARID2 functions as a tumor suppressor in myeloid neoplasms by repressing self-renewal in hematopoietic progenitor cells. Cancer Cell 2018;34:741-756.e8.
Adhikari A, Mainali P, Davie JK. JARID2 and the PRC2 complex regulate the cell cycle in skeletal muscle. J Biol Chem 2019;294:19451-19464.
Kinkel SA, Galeev R, Flensburg C, et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood 2015;125:1890-1900.
Zhao Y, Shi Y, Shen H, et al. m6A-binding proteins: the emerging crucial performers in epigenetics [review]. J Hematol Oncol 2020;13:35.
Pan Z, Zhao R, Li B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer 2022;21:16.
Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer 2022;21:60.

Auteurs

Yu Kuang (Y)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Ruiru Li (R)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Jingnan Wang (J)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Siqi Xu (S)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Qian Qiu (Q)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Shuibin Lin (S)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Di Liu (D)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Chuyu Shen (C)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Yingli Liu (Y)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Meilin Xu (M)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Wei Lin (W)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Shuoyang Zhang (S)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Liuqin Liang (L)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Hanshi Xu (H)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Youjun Xiao (Y)

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Classifications MeSH