Characterization of the active site in the thiocyanate-forming protein from

allylglucosinolate catalysis electron paramagnetic resonance non-heme iron proteins specifier proteins

Journal

Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 16 04 2023
accepted: 19 07 2023
medline: 17 8 2023
pubmed: 17 8 2023
entrez: 16 8 2023
Statut: aheadofprint

Résumé

Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from

Identifiants

pubmed: 37586381
pii: hsz-2023-0187
doi: 10.1515/hsz-2023-0187
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Références

Adams, J., Kelso, R., and Cooley, L. (2000). The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell. Biol. 10: 17–24, https://doi.org/10.1016/s0962-8924(99)01673-6 .
doi: 10.1016/s0962-8924(99)01673-6
Backenköhler, A., Eisenschmidt, D., Schneegans, N., Strieker, M., Brandt, W., and Wittstock, U. (2018). Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown. PLoS One 5: e0205755, https://doi.org/10.1371/journal.pone.0205755 .
doi: 10.1371/journal.pone.0205755
Bolman, P.S.H., Safarik, I., Stiles, D.A., Tyerman, W.J.R., and Strausz, O.P. (1970). Electron paramagnetic resonance spectra of some sulfur-containing radicals. Can. J. Chem. 48: 3872–3876, https://doi.org/10.1139/v70-651 .
doi: 10.1139/v70-651
Brandt, W., Backenköhler, A., Schulze, E., Plock, A., Herberg, T., Roese, E., and Wittstock, U. (2014). Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism. Plant Mol. Biol. 84: 173–188, https://doi.org/10.1007/s11103-013-0126-0 .
doi: 10.1007/s11103-013-0126-0
Burow, M., Markert, J., Gershenzon, J., and Wittstock, U. (2006). Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J. 273: 2432–2446, https://doi.org/10.1111/j.1742-4658.2006.05252.x .
doi: 10.1111/j.1742-4658.2006.05252.x
Eisenschmidt-Bönn, D., Schneegans, N., Backenköhler, A., Wittstock, U., and Brandt, W. (2019). Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation. Plant J. 99: 329–343, https://doi.org/10.1111/tpj.14327 .
doi: 10.1111/tpj.14327
Feig, A.L. and Lippard, S.J. (1994). Reactions of Non-Heme iron (III) centers with dioxygen in biology and chemistry. Chem. Rev. 94: 759–805, https://doi.org/10.1021/cr00027a011 .
doi: 10.1021/cr00027a011
Ferreira, C.M.H., Pinto, I.S., Soares, E.V., and Soares, H.M. (2015). (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv. 5: 30989–31003, https://doi.org/10.1039/c4ra15453c .
doi: 10.1039/c4ra15453c
Finel, C. and Kevan, L. (1993). Effects of Fe3+ on electron spin echo signals in zeolites. J. Chem. Soc. Faraday Trans. 89: 2559–2565, https://doi.org/10.1039/ft9938902559 .
doi: 10.1039/ft9938902559
Gaffney, B.J., Mavrophilipos, D.V., and Doctor, K.S. (1993). Access of ligands to the ferric center in lipoxygenase-1. Biophys. J. 64: 773–783, https://doi.org/10.1016/s0006-3495(93)81438-3 .
doi: 10.1016/s0006-3495(93)81438-3
Gaffney, B.J. (2009). EPR of mononuclear non-Heme iron proteins. In: Berliner, L. and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance . Springer, New York, pp. 232–268.
Gamarra, L.F., Pontuschka, W.M., Amaro, E., Costa-Filho, A.J., Brito, G.E.S., Vieira, E.D., Carneiro, S.M., Escriba, D.M., Falleiros, A.M.F., and Salvador, V.L. (2008). Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: an EPR and XRF study. Mater. Sci. Eng. 28: 519–525, https://doi.org/10.1016/j.msec.2007.06.005 .
doi: 10.1016/j.msec.2007.06.005
Gonçalves, L.C.P., Mansouri, H.R., Bastos, E.L., Abdellah, M., Fadiga, B.S., Sá, J., Rudroff, F., and Mihovilovic, M.D. (2019). Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation. Catal. Sci. Technol. 9: 1365–1371, https://doi.org/10.1039/c8cy02524j .
doi: 10.1039/c8cy02524j
Gumz, F., Krausze, J., Eisenschmidt, D., Backenköhler, A., Barleben, L., Brandt, W., and Wittstock, U. (2015). The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown. Plant Mol. Biol. 89: 67–81, https://doi.org/10.1007/s11103-015-0351-9 .
doi: 10.1007/s11103-015-0351-9
Habib, A., Tabata, M., and Wu, Y.G. (2005). Formation of gold nanoparticles by good’s buffers. Bull. Chem. Soc. Jpn. 78: 262–269, https://doi.org/10.1246/bcsj.78.262 .
doi: 10.1246/bcsj.78.262
Hasegawa, H. and Nakamura, K. (2010). Tryptophan hydroxylase and serotonin synthesis regulation. In: Müller, C.P. and Jacobs, B.L. (Eds.), Handbook of behavioral neuroscience . Elsevier, pp. 183–202.
Hinderberger, D., Ebner, S., Mayr, S., Jaun, B., Reiher, M., Goenrich, M., Thauer, R.K., and Harmer, J. (2008). Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. J. Biol. Inorg. Chem. 13: 1275–1289, https://doi.org/10.1007/s00775-008-0417-0 .
doi: 10.1007/s00775-008-0417-0
Hinderberger, D., Piskorski, R.P., Goenrich, M., Thauer, R.K., Schweiger, A., Harmer, J., and Jaun, B. (2006). A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation. Angew. Chem. Int. Ed. 45: 3602–3607, https://doi.org/10.1002/anie.200600366 .
doi: 10.1002/anie.200600366
Hunold, J., Eisermann, J., Brehm, M., and Hinderberger, D. (2020). Characterization of aqueous lower polarity solvation shells around amphiphilic TEMPO radicals in water. J. Phys. Chem. B 124: 8601–8609, https://doi.org/10.1021/acs.jpcb.0c04863 .
doi: 10.1021/acs.jpcb.0c04863
Kappl, R., Eltis, L.D., Caspersen, M.B., Christensen, H.E.M., and Hüttermann, J. (2007). Site-specific oxidation of the (Fe4S4) cubanes in high-potential iron sulfur proteins as probed by EPR and orientation-selective proton ENDOR spectroscopy: Ectothiorhodospira halophila I versus Rhodocyclus tenuis. Appl. Magn. Reson. 31: 483–507, https://doi.org/10.1007/bf03166598 .
doi: 10.1007/bf03166598
Kappl, R., Bracic, G., and Hüttermann, J. (2009). Probing structural and electronic parameters in randomly oriented metalloproteins by orientation-selective ENDOR spectroscopy. In: Berliner, L., and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance . Springer, New York, pp. 63–103.
Kostka, K.L., Fox, B.G., Hendrich, M.P., Collins, T.J., Rickard, C.E.F., Wright, J., and Munck, E. (1993). High-valent transition metal chemistry. Mössbauer and EPR studies of high-spin (S = 2) iron (1V) and intermediate-spin (S = 3/2) iron (II1) complexes with a macrocyclic Tetraamido-N ligand. J. Am. Chem. Soc. 115: 6746–6757, https://doi.org/10.1021/ja00068a035 .
doi: 10.1021/ja00068a035
Kuchernig, J.C., Backenköhler, A., Lübbecke, M., Burow, M., and Wittstock, U. (2011). A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Phytochemistry 72: 1699–1709, https://doi.org/10.1016/j.phytochem.2011.06.013 .
doi: 10.1016/j.phytochem.2011.06.013
Kuchernig, J.C., Burow, M., and Wittstock, U. (2012). Evolution of specifier proteins in glucosinolate-containing plants. BMC Evol. Biol. 12: 127, https://doi.org/10.1186/1471-2148-12-127 .
doi: 10.1186/1471-2148-12-127
Labute, P. (2008). The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 29: 1693–1698, https://doi.org/10.1002/jcc.20933 .
doi: 10.1002/jcc.20933
Lassmann, G., Kolberg, M., Bleifuss, G., Gräslund, A., Sjöberg, B.M., and Lubitz, W. (2003). Protein thiyl radicals in disordered systems: a comparative EPR study at low temperature. Phys. Chem. 5: 2442–2453, https://doi.org/10.1039/b302601a .
doi: 10.1039/b302601a
Maltempo, M.M. and Moss, T.H. (1976). The spin 3/2 state and quantum spin mixtures in haem proteins. Q. Rev. Biophys. 9: 181–215, https://doi.org/10.1017/s0033583500002407 .
doi: 10.1017/s0033583500002407
Matile, P. (1980). Die Senfölbombe. Zur Kompartimentierung des Myrosinasesystems. Biochem. Physiol. Pflanz. 175: 722–731, https://doi.org/10.1016/s0015-3796(80)80059-x .
doi: 10.1016/s0015-3796(80)80059-x
Molecular Operating Environment (MOE), 2019.01 (2019). Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada.
Mumm, R., Burow, M., Bukovinszkine’Kiss, G., Kazantzidou, E., Wittstock, U., Dicke, M., and Gershenzon, J. (2008). Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J. Chem. Ecol. 34: 1311–1321, https://doi.org/10.1007/s10886-008-9534-z .
doi: 10.1007/s10886-008-9534-z
Neese, F. (2009). Spin-Hamiltonian parameters from first principle calculations: Theory and application. In: Berliner, L. and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance . Springer, New York, pp. 175–229.
Noveron, J.C., Olmstead, M.M., and Mascharak, P.K. (1998). Effect of carboxamido N coordination to iron on the redox potential of low-spin non-Heme iron centers with N,S coordination: relevance to the iron site of nitrile hydratase. Inorg. Chem. 37: 1138–1139, https://doi.org/10.1021/ic971388a .
doi: 10.1021/ic971388a
Palmer, G. (1985). The electron paramagnetic resonance of metalloproteins. Biochem. Soc. Trans. 13: 548–560, https://doi.org/10.1042/bst0130548 .
doi: 10.1042/bst0130548
Peisach, J., Blumberg, W.E., Lode, E.T., and Coon, R.M. (1971a). An analysis of the electron paramagnetic resonance spectrum of pseudomonas oleovorans rubredoxin. A method for determination of the ligands of ferric iron in completely rhombic sites. J. Biol. Chem. 246: 5877–5881, https://doi.org/10.1016/s0021-9258(18)61807-1 .
doi: 10.1016/s0021-9258(18)61807-1
Peisach, J., Blumberg, W.E., Ogawa, S., Rachmilewitz, E.A., and Oltzik, R. (1971b). The effects of protein conformation on the heme symmetry in high spin ferric heme proteins as studied by electron paramagnetic resonance. J. Biol. Chem. 246: 3342–3355, https://doi.org/10.1016/s0021-9258(18)62232-x .
doi: 10.1016/s0021-9258(18)62232-x
Preoteasa, E.A., Schianchi, G., Camillo Giori, D., Duliu, O.G., Butturini, A., and Izzi, G. (2013). Unexpected detection of low and high spin ferrihemoglobin derivatives in blood serum of polytransfused patients with homozygous β-thalassemia under chelation therapy. An EPR study. Dig. J. Nanomater. Biostruct. 8: 469–499.
Que, L.Jr and Ho, R.Y. (1996). Dioxygen activation by enzymes with mononuclear non-Heme iron active sites. Chem. Rev. 96: 2607–2624, https://doi.org/10.1021/cr960039f .
doi: 10.1021/cr960039f
Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., and Meijer, J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–114, https://doi.org/10.1023/a:1006380021658 .
Reed, A.C. and Guiset, F.A. (1996). “Magnetochemical” series. Ligand field strengths of weakly binding anions deduced from S = 3/2, 5/2 spin state mixing in iron (III) porphyrins. J. Am. Chem. Soc. 118: 3281–3282, https://doi.org/10.1021/ja954263i .
doi: 10.1021/ja954263i
Rowland, J.M., Olmstead, M., and Mascharak, P.K. (2001). Syntheses, structures, and reactivity of low spin iron(III) complexes containing a single carboxamido nitrogen in a (FeN5L) chromophore. Inorg. Chem. 40: 2810–2817, https://doi.org/10.1021/ic001127s .
doi: 10.1021/ic001127s
Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F.D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O., and Herges, R. (2018). Light-controlled switching of the spin state of iron (III). Nat. Commun. 9: 4750, https://doi.org/10.1038/s41467-018-07023-1 .
doi: 10.1038/s41467-018-07023-1
Simonato, J.P., Pécaut, J., Le Pape, L., Oddou, J.L., Jeandey, C., Shang, M., Scheidt, W.R., Wojaczyński, J., Wołowiec, S., Latos-Grazyński, L., et al.. (2000). An integrated approach to the mid-spin state (S = 3/2) in six-coordinate iron (III) chiroporphyrins. Inorg. Chem. 39: 3978–3987, https://doi.org/10.1021/ic000150a .
doi: 10.1021/ic000150a
Ślawska-Waniewska, A., Mosiniewicz-Szablewska, E., Nedelko, N., Gałązka-Friedman, J., and Friedman, A. (1993). Magnetic studies of iron-entities in human tissues. J. Magn. Magn. Mater. 272–276: 2417–2419, https://doi.org/10.1016/j.jmmm.2003.12.843 .
doi: 10.1016/j.jmmm.2003.12.843
Solomon, E.I., Brunold, T.C., Davis, M.I., Kemsley, J.N., Lee, S.K., Lehnert, N., Neese, F., Skulan, A.J., Yang, Y.S., and Zhou, J. (2000). Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev. 100: 235–350, https://doi.org/10.1021/cr9900275 .
doi: 10.1021/cr9900275
Traka, M.H., Saha, S., Huseby, S., Kopriva, S., Walley, P.G., Barker, G.C., Moore, J., Mero, G., van den Bosch, F., Constant, H., et al.. (2013). Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. New Phytol. 198: 1085–1095, https://doi.org/10.1111/nph.12232 .
doi: 10.1111/nph.12232
Vinck, E. (2007). The strength of EPR and ENDOR techniques in revealing structure–function relationships in metalloproteins. Phys.Chem. Chem. Phys. 9: 4620–4638, https://doi.org/10.1039/b701568b .
doi: 10.1039/b701568b
Van Doorslaer, S. (2017). Understanding heme proteins with hyperfine spectroscopy. J. Magn. Reson. 280: 79–88, https://doi.org/10.1016/j.jmr.2017.01.008 .
doi: 10.1016/j.jmr.2017.01.008
van Gastel, M., Lubitz, W., Lassmann, G., and Neese, F. (2004). Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. J. Am. Chem. Soc. 126: 2237–2246, https://doi.org/10.1021/ja038813l .
doi: 10.1021/ja038813l
Walker, F.A. (1999). Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferri heme centers and their corresponding heme proteins. Coord. Chem. Rev. 185–186: 471–534, https://doi.org/10.1016/s0010-8545(99)00029-6 .
doi: 10.1016/s0010-8545(99)00029-6
Wang, Y., Davis, I., Chan, Y., Naik, S.G., Griffith, W.P., and Liu, A. (2020). Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J. Biol. Chem. 33: 11789–11802, https://doi.org/10.1074/jbc.ra120.013915 .
doi: 10.1074/jbc.ra120.013915
Wittstock, U., Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., and Gershenzon, J. (2003). Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo, J.T. (Ed.). Recent advances in phytochemistry , Vol. 37. Elsevier, pp. 101–125.
Wittstock, U., Kurzbach, E., Herfurth, A.M., and Stauber, E.J. (2016). Glucosinolate breakdown. Adv Bot Res. 80: 125–169.
Zhang, W., Wang, W., Liu, Z., Xie, Y., Wang, H., Mu, Y., Huang, Y., and Feng, Y. (2016). Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity. Biochem. Biophys. Res. Commun. 478: 746–751, https://doi.org/10.1016/j.bbrc.2016.08.019 .
doi: 10.1016/j.bbrc.2016.08.019
Zhang, W., Zhou, Y., Wang, K., Dong, Y., Wang, W., Feng, Y. (2017). Crystal structure of the nitrile-specifier protein NSP1 from Arabidopsis thaliana. Biochem. Biophys. Res. Commun . 488: 147–152, https://doi.org/10.1016/j.bbrc.2017.05.027 .
doi: 10.1016/j.bbrc.2017.05.027

Auteurs

Haleh Hashemi Haeri (H)

Martin Luther University Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.

Nicola Schneegans (N)

Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.

Daniela Eisenschmidt-Bönn (D)

Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.

Wolfgang Brandt (W)

Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.

Ute Wittstock (U)

Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.

Dariush Hinderberger (D)

Martin Luther University Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.

Classifications MeSH