Understanding the Surface Regeneration and Reactivity of Garnet Solid-State Electrolytes.


Journal

ACS energy letters
ISSN: 2380-8195
Titre abrégé: ACS Energy Lett
Pays: United States
ID NLM: 101697523

Informations de publication

Date de publication:
11 Aug 2023
Historique:
received: 26 05 2023
accepted: 10 07 2023
medline: 17 8 2023
pubmed: 17 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Garnet solid-electrolyte-based Li-metal batteries can be used in energy storage devices with high energy densities and thermal stability. However, the tendency of garnets to form lithium hydroxide and carbonate on the surface in an ambient atmosphere poses significant processing challenges. In this work, the decomposition of surface layers under various gas environments is studied by using two surface-sensitive techniques, near-ambient-pressure X-ray photoelectron spectroscopy and grazing incidence X-ray diffraction. It is found that heating to 500 °C under an oxygen atmosphere (of 1 mbar and above) leads to a clean garnet surface, whereas low oxygen partial pressures (i.e., in argon or vacuum) lead to additional graphitic carbon deposits. The clean surface of garnets reacts directly with moisture and carbon dioxide below 400 and 500 °C, respectively. This suggests that additional CO

Identifiants

pubmed: 37588018
doi: 10.1021/acsenergylett.3c01042
pmc: PMC10425971
doi:

Types de publication

Journal Article

Langues

eng

Pagination

3476-3484

Informations de copyright

© 2023 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1507-1515
pubmed: 28001045
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):350-359
pubmed: 33372519
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14700-14709
pubmed: 33729745
Adv Mater. 2018 Apr;30(17):e1705702
pubmed: 29468745
ACS Appl Mater Interfaces. 2015 Oct 28;7(42):23685-93
pubmed: 26440586
Acta Crystallogr C Struct Chem. 2022 Jan 1;78(Pt 1):1-6
pubmed: 34982043
Nat Mater. 2019 Dec;18(12):1278-1291
pubmed: 31427742
Chem Rev. 2020 May 27;120(10):4257-4300
pubmed: 32271022
J Phys Chem B. 2018 Jan 18;122(2):1000-1008
pubmed: 29215283
Inorg Chem. 2016 Feb 1;55(3):1324-32
pubmed: 26756498
Phys Chem Chem Phys. 2014 Sep 14;16(34):18294-300
pubmed: 25057850

Auteurs

Sundeep Vema (S)

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
The Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, United Kingdom.

Farheen N Sayed (FN)

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
The Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, United Kingdom.

Supreeth Nagendran (S)

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Burcu Karagoz (B)

Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom.

Christian Sternemann (C)

Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.

Michael Paulus (M)

Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.

Georg Held (G)

Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom.

Clare P Grey (CP)

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Classifications MeSH