MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.
Journal
ACS applied nano materials
ISSN: 2574-0970
Titre abrégé: ACS Appl Nano Mater
Pays: United States
ID NLM: 101726750
Informations de publication
Date de publication:
11 Aug 2023
11 Aug 2023
Historique:
received:
14
04
2023
accepted:
28
06
2023
medline:
17
8
2023
pubmed:
17
8
2023
entrez:
17
8
2023
Statut:
epublish
Résumé
Atomically precise graphene nanoribbons (GNRs) are predicted to exhibit exceptional edge-related properties, such as localized edge states, spin polarization, and half-metallicity. However, the absence of low-resistance nanoscale electrical contacts to the GNRs hinders harnessing their properties in field-effect transistors. In this paper, we make electrical contact with nine-atom-wide armchair GNRs using superconducting alloy MoRe as well as Pd (as a reference), which are two of the metals providing low-resistance contacts to carbon nanotubes. We take a step toward contacting a single GNR by fabricating electrodes with needlelike geometry, with about 20 nm tip diameter and 10 nm separation. To preserve the nanoscale geometry of the contacts, we develop a PMMA-assisted technique to transfer the GNRs onto the prepatterned electrodes. Our device characterizations as a function of bias voltage and temperature show thermally activated gate-tunable conductance in GNR-MoRe-based transistors.
Identifiants
pubmed: 37588262
doi: 10.1021/acsanm.3c01630
pmc: PMC10425920
doi:
Types de publication
Journal Article
Langues
eng
Pagination
13935-13944Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Phys Rev Lett. 1985 Apr 15;54(15):1609-1612
pubmed: 10031087
Nature. 2006 Nov 16;444(7117):347-9
pubmed: 17108960
Nat Nanotechnol. 2010 Jul;5(7):487-96
pubmed: 20512128
Nanotechnology. 2019 Oct 4;30(40):405205
pubmed: 31261138
Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4422-5
pubmed: 23512734
Nat Mater. 2015 Dec;14(12):1195-205
pubmed: 26585088
Sci Rep. 2020 Feb 6;10(1):1988
pubmed: 32029795
Nature. 2018 Aug;560(7717):209-213
pubmed: 30089919
Nanoscale. 2016 May 21;8(19):10240-51
pubmed: 27124382
ACS Nano. 2018 Jan 23;12(1):74-81
pubmed: 29200262
Nature. 2016 Mar 24;531(7595):489-92
pubmed: 27008967
Nat Commun. 2017 Sep 21;8(1):633
pubmed: 28935943
Phys Rev Lett. 2007 Nov 2;99(18):186801
pubmed: 17995426
Small. 2012 Oct 22;8(20):3129-36
pubmed: 22826024
Phys Rev Lett. 1985 Apr 15;54(15):1605-1608
pubmed: 10031086
Nature. 2010 Jul 22;466(7305):470-3
pubmed: 20651687
Phys Rev B Condens Matter. 1996 Dec 15;54(24):17954-17961
pubmed: 9985930
Small. 2022 Aug;18(31):e2202301
pubmed: 35713270
Phys Chem Chem Phys. 2020 Mar 14;22(10):5667-5672
pubmed: 32103224
ACS Nano. 2020 May 26;14(5):5754-5762
pubmed: 32223259
Nano Lett. 2012 Aug 8;12(8):3887-92
pubmed: 22775270
Science. 2015 Oct 2;350(6256):68-72
pubmed: 26430114
Science. 2020 Sep 25;369(6511):1597-1603
pubmed: 32973025
Nature. 2003 Aug 7;424(6949):654-7
pubmed: 12904787
Nano Lett. 2005 Jul;5(7):1497-502
pubmed: 16178264
Sci Rep. 2012;2:599
pubmed: 22953042
Phys Rev Lett. 2006 Nov 24;97(21):216803
pubmed: 17155765
Nature. 2018 Aug;560(7717):204-208
pubmed: 30089918