Cathepsin S activity controls chronic stress-induced muscle atrophy and dysfunction in mice.
Apoptosis
Catabolism
Cathepsin S
Chronic stress
Skeletal muscle injury
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
17 Aug 2023
17 Aug 2023
Historique:
received:
28
01
2023
accepted:
17
07
2023
revised:
06
06
2023
medline:
18
8
2023
pubmed:
17
8
2023
entrez:
17
8
2023
Statut:
epublish
Résumé
Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS
Identifiants
pubmed: 37589754
doi: 10.1007/s00018-023-04888-4
pii: 10.1007/s00018-023-04888-4
pmc: PMC10435624
doi:
Substances chimiques
cathepsin S
EC 3.4.22.27
Cathepsins
EC 3.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
254Subventions
Organisme : National Natural Science Foundation of China
ID : 81770485
Organisme : National Natural Science Foundation of China
ID : 82260091
Organisme : National Natural Science Foundation of China
ID : 81560240
Informations de copyright
© 2023. The Author(s).
Références
McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C et al (2019) Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566:383–387. https://doi.org/10.1038/s41586-019-0948-2
doi: 10.1038/s41586-019-0948-2
pmcid: 6442744
pubmed: 30760925
Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A et al (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. https://doi.org/10.1038/nm.3589
doi: 10.1038/nm.3589
pmcid: 4087061
pubmed: 24952646
Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S et al (2020) Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577:676–681. https://doi.org/10.1038/s41586-020-1935-3
doi: 10.1038/s41586-020-1935-3
pmcid: 7184936
pubmed: 31969699
Jahre H, Grotle M, Smedbraten K, Richardsen KR, Cote P, Steingrimsdottir OA et al (2022) Low social acceptance among peers increases the risk of. Persistent musculoskeletal pain in adolescents prospective data from the fit futures study. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-022-04995-6
doi: 10.1186/s12891-022-04995-6
pmcid: 8756715
pubmed: 35027018
Shirif AZ, Kovacevic S, Brkljacic J, Teofilovic A, Elakovic I, Djordjevic A (2021) Matic G (2021) Decreased glucocorticoid signaling potentiates lipid-induced inflammation and contributes to insulin resistance in the skeletal muscle of fructose-fed male rats exposed to stress. Int J Mol Sci 22:7026. https://doi.org/10.3390/ijms22137206
doi: 10.3390/ijms22137206
Han J, Meng Q, Shen L, Wu G (2018) Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. https://doi.org/10.1186/s12944-018-0657-0
doi: 10.1186/s12944-018-0657-0
pmcid: 6303848
pubmed: 30579356
Costelli P, Carbo N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argiles JM, Baccino FM (1993) Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest 92:2783–2789. https://doi.org/10.1172/JCI116897
doi: 10.1172/JCI116897
pmcid: 288478
pubmed: 8254032
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS et al (2018) Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle 9:987–1002. https://doi.org/10.1002/jcsm.12354
doi: 10.1002/jcsm.12354
pmcid: 6204589
pubmed: 30328290
Rorabaugh BR, Mabe NW, Seeley SL, Stoops TS, Mucher KE, Ney CP et al (2020) Myocardial fibrosis, inflammation, and altered cardiac gene expression profiles in rats exposed to a predator-based model of posttraumatic stress disorder. Stress 23:125–135. https://doi.org/10.1080/10253890.2019.1641081
doi: 10.1080/10253890.2019.1641081
pubmed: 31347429
Valenzuela CA, Zuloaga R, Mercado L, Einarsdottir IE, Bjornsson BT, Valdes JA, Molina A (2018) Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish. Am J Physiol Regul Integr Comp Physiol 14:R102–R113. https://doi.org/10.1152/ajpregu.00009.2017
doi: 10.1152/ajpregu.00009.2017
Saulnier RJ, Best C, Kostyniuk DJ, Gilmour KM, Lamarre SG (2021) Chronic social stress alters protein metabolism in juvenile rainbow trout, oncorhynchus mykiss. J Comp Physiol B 191:517–530. https://doi.org/10.1007/s00360-021-01340-6
doi: 10.1007/s00360-021-01340-6
pmcid: 8043953
pubmed: 33712903
Saxton RA, Sabatini DM (2017) Mtor signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004
doi: 10.1016/j.cell.2017.02.004
pmcid: 5394987
pubmed: 28283069
Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL (2004) Igf-i stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and murf1. Am J Physiol Endocrinol Metab 287:E591-601. https://doi.org/10.1152/ajpendo.00073.2004
doi: 10.1152/ajpendo.00073.2004
pubmed: 15100091
Frosig C, Sajan MP, Maarbjerg SJ, Brandt N, Roepstorff C, Wojtaszewski JF et al (2007) Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase c and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiol 582:1289–1301. https://doi.org/10.1113/jphysiol.2007.136614
doi: 10.1113/jphysiol.2007.136614
pmcid: 2075270
pubmed: 17540697
Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in l6 muscle cells. J Biol Chem 278:15641–15651. https://doi.org/10.1074/jbc.M208984200
doi: 10.1074/jbc.M208984200
pubmed: 12594228
Ogasawara S, Cheng XW, Inoue A, Hu L, Piao L, Yu C et al (2018) Cathepsin k activity controls cardiotoxin-induced skeletal muscle repair in mice. J Cachexia Sarcopenia Muscle 9:160–175. https://doi.org/10.1002/jcsm.12248
doi: 10.1002/jcsm.12248
pubmed: 29058826
Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA et al (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029. https://doi.org/10.1074/jbc.M509134200
doi: 10.1074/jbc.M509134200
pubmed: 16365041
Wu H, Cheng XW, Hu L, Takeshita K, Hu C, Du Q et al (2016) Cathepsin S activity controls injury-related vascular repair in mice via the tlr2-mediated p38mapk and pi3k-akt/p-hdac6 signaling pathway. Arterioscler Thromb Vasc Biol 36:1549–1557. https://doi.org/10.1161/ATVBAHA.115.307110
doi: 10.1161/ATVBAHA.115.307110
pmcid: 4961274
pubmed: 27365406
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C (2019) Cathepsin S deficiency mitigated chronic stress-related neointimal hyperplasia in mice. J Am Heart Assoc 8:e011994. https://doi.org/10.1161/JAHA.119.011994
doi: 10.1161/JAHA.119.011994
pmcid: 6662117
pubmed: 31296090
Tjondrokoesoemo A, Schips TG, Sargent MA, Vanhoutte D, Kanisicak O, Prasad V et al (2016) Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice. J Biol Chem 291:9920–9928. https://doi.org/10.1074/jbc.M116.719054
doi: 10.1074/jbc.M116.719054
pmcid: 4858995
pubmed: 26966179
Yue X, Piao L, Wang H, Huang Z, Meng X, Sasaki T et al (2022) Cathepsin k deficiency prevented kidney damage and dysfunction in response to 5/6 nephrectomy injury in mice with or without chronic stress. Hypertension 79:1713–1723. https://doi.org/10.1161/HYPERTENSIONAHA.122.19137
doi: 10.1161/HYPERTENSIONAHA.122.19137
pubmed: 35726642
Goto H, Inoue A, Piao L, Hu L, Huang Z, Meng X et al (2021) Proliferin-1 ameliorates cardiotoxin-related skeletal muscle repair in mice. Stem Cells Int 2021:9202990. https://doi.org/10.1155/2021/9202990
doi: 10.1155/2021/9202990
pmcid: 8692050
pubmed: 34950212
Piao L, Huang Z, Inoue A, Kuzuya M, Cheng XW (2022) Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in samp10 mice. Stem Cell Res Ther 13:226. https://doi.org/10.1186/s13287-022-02895-z
doi: 10.1186/s13287-022-02895-z
pmcid: 9166592
pubmed: 35659361
Piao L, Zhao G, Zhu E, Inoue A, Shibata R, Lei Y et al (2017) Chronic psychological stress accelerates vascular senescence and impairs ischemia-induced neovascularization: the role of dipeptidyl peptidase-4/glucagon-like peptide-1-adiponectin axis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.006421
doi: 10.1161/JAHA.117.006421
pmcid: 5721852
pubmed: 28963101
Long YC, Cheng Z, Copps KD, White MF (2011) Insulin receptor substrates irs1 and irs2 coordinate skeletal muscle growth and metabolism via the akt and ampk pathways. Mol Cell Biol. https://doi.org/10.1128/MCB.00983-10
doi: 10.1128/MCB.00983-10
pubmed: 21135130
Kimura K, Cheng XW, Inoue A, Hu L, Koike T, Kuzuya M (2014) Beta-hydroxy-beta-methylbutyrate facilitates pi3k/akt-dependent mammalian target of rapamycin and foxo1/3a phosphorylations and alleviates tumor necrosis factor alpha/interferon gamma-induced murf-1 expression in c2c12 cells. Nutr Res 34:368–374. https://doi.org/10.1016/j.nutres.2014.02.003
doi: 10.1016/j.nutres.2014.02.003
pubmed: 24774073
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, El Raey MA, Sobeh M (2021) Syzygium jambos extract mitigates pancreatic oxidative stress, inflammation and apoptosis and modulates hepatic irs-2/akt/glut4 signaling pathway in streptozotocin-induced diabetic rats. Biomed Pharmacother 142:112085. https://doi.org/10.1016/j.biopha.2021.112085
doi: 10.1016/j.biopha.2021.112085
pubmed: 34463263
Bao S, Wang X, Cho SB, Wu YL, Wei C, Han S et al (2021) Agriophyllum oligosaccharides ameliorate diabetic insulin resistance through ins-r/irs/glut4-mediated insulin pathway in db/db mice and min6 cells. Front Pharmacol 12:656220. https://doi.org/10.3389/fphar.2021.656220
doi: 10.3389/fphar.2021.656220
pmcid: 8419282
pubmed: 34497509
Yoshida T, Delafontaine P (2020) Mechanisms of igf-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9:1970. https://doi.org/10.3390/cells9091970
doi: 10.3390/cells9091970
pmcid: 7564605
pubmed: 32858949
Meng X, Huang Z, Inoue A, Wang H, Wan Y, Yue X et al (2020) Cathepsin k activity controls cachexia-induced muscle atrophy via the modulation of irs1 ubiquitination. J Cachexia Sarcopenia Muscle 13:1197–1209. https://doi.org/10.1002/jcsm.12919(2022)
doi: 10.1002/jcsm.12919(2022)
Jin X, Jin C, Nakamura K, Jin T, Xin M, Wan Y et al (2020) Increased dipeptidyl peptidase-4 accelerates chronic stress-related thrombosis in a mouse carotid artery model. J Hypertens 38:1504–1513. https://doi.org/10.1097/HJH.0000000000002418
doi: 10.1097/HJH.0000000000002418
pubmed: 32205561
Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D et al (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting tnf-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21:786–794. https://doi.org/10.1038/nm.3869
doi: 10.1038/nm.3869
pubmed: 26053624
Yujra VQ, Antunes HKM, Monico-Neto M, Pisani LP, Santamarina AB, Quintana HT et al (2018) Sleep deprivation induces pathological changes in rat masticatory muscles: Role of toll like signaling pathway and atrophy. J Cell Biochem 119:2269–2277. https://doi.org/10.1002/jcb.26389
doi: 10.1002/jcb.26389
pubmed: 28857246
Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A et al (2018) Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of nox2 activity. Free Radic Biol Med 129:504–519. https://doi.org/10.1016/j.freeradbiomed.2018.10.422
doi: 10.1016/j.freeradbiomed.2018.10.422
pubmed: 30342191
Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M et al (2010) Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1. Nature 464:1313–1319. https://doi.org/10.1038/nature08991
doi: 10.1038/nature08991
pubmed: 20357764
Inoue A, Cheng XW, Huang Z, Hu L, Kikuchi R, Jiang H et al (2017) Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/adipor1 activation in samp10 mice. J Cachexia Sarcopenia Muscle 8:370–385. https://doi.org/10.1002/jcsm.12166
doi: 10.1002/jcsm.12166
pubmed: 27897419
Yue X, Jiang H, Xu Y, Xia M, Cheng XW (2020) Cathepsin k deficiency impaired ischemia-induced neovascularization in aged mice. Stem Cells Int 2020:6938620. https://doi.org/10.1155/2020/6938620
doi: 10.1155/2020/6938620
pmcid: 7346230
pubmed: 32676120
Zhang X, Luo S, Wang M, Shi GP (2020) Cysteinyl cathepsins in cardiovascular diseases. Biochim Biophys Acta Proteins Proteom 1868:140360. https://doi.org/10.1016/j.bbapap.2020.140360
doi: 10.1016/j.bbapap.2020.140360
pmcid: 7029168
pubmed: 31926332
Xia B, Li Q, Wu J, Yuan X, Wang F, Lu X et al (2022) Sinomenine confers protection against myocardial ischemia reperfusion injury by preventing oxidative stress, cellular apoptosis, and inflammation. Front Pharmacol 13:922484. https://doi.org/10.3389/fphar.2022.922484
doi: 10.3389/fphar.2022.922484
pmcid: 9274168
pubmed: 35837272
Chou WC, Tsai KL, Hsieh PL, Wu CH, Jou IM, Tu YK, Ma CH (2022) Galectin-3 facilitates inflammation and apoptosis in chondrocytes through upregulation of the tlr-4-mediated oxidative stress pathway in tc28a2 human chondrocyte cells. Environ Toxicol 37:478–488. https://doi.org/10.1002/tox.23414
doi: 10.1002/tox.23414
pubmed: 34894372
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ (2022) Cathepsin S (CTSS) activity in health and disease - a treasure trove of untapped clinical potential. Mol Aspects Med. https://doi.org/10.1016/j.mam.2022.101106
doi: 10.1016/j.mam.2022.101106
pubmed: 35868042