Cathepsin S activity controls chronic stress-induced muscle atrophy and dysfunction in mice.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 28 01 2023
accepted: 17 07 2023
revised: 06 06 2023
medline: 18 8 2023
pubmed: 17 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS

Identifiants

pubmed: 37589754
doi: 10.1007/s00018-023-04888-4
pii: 10.1007/s00018-023-04888-4
pmc: PMC10435624
doi:

Substances chimiques

cathepsin S EC 3.4.22.27
Cathepsins EC 3.4.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

254

Subventions

Organisme : National Natural Science Foundation of China
ID : 81770485
Organisme : National Natural Science Foundation of China
ID : 82260091
Organisme : National Natural Science Foundation of China
ID : 81560240

Informations de copyright

© 2023. The Author(s).

Références

McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C et al (2019) Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566:383–387. https://doi.org/10.1038/s41586-019-0948-2
doi: 10.1038/s41586-019-0948-2 pmcid: 6442744 pubmed: 30760925
Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A et al (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. https://doi.org/10.1038/nm.3589
doi: 10.1038/nm.3589 pmcid: 4087061 pubmed: 24952646
Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S et al (2020) Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577:676–681. https://doi.org/10.1038/s41586-020-1935-3
doi: 10.1038/s41586-020-1935-3 pmcid: 7184936 pubmed: 31969699
Jahre H, Grotle M, Smedbraten K, Richardsen KR, Cote P, Steingrimsdottir OA et al (2022) Low social acceptance among peers increases the risk of. Persistent musculoskeletal pain in adolescents prospective data from the fit futures study. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-022-04995-6
doi: 10.1186/s12891-022-04995-6 pmcid: 8756715 pubmed: 35027018
Shirif AZ, Kovacevic S, Brkljacic J, Teofilovic A, Elakovic I, Djordjevic A (2021) Matic G (2021) Decreased glucocorticoid signaling potentiates lipid-induced inflammation and contributes to insulin resistance in the skeletal muscle of fructose-fed male rats exposed to stress. Int J Mol Sci 22:7026. https://doi.org/10.3390/ijms22137206
doi: 10.3390/ijms22137206
Han J, Meng Q, Shen L, Wu G (2018) Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. https://doi.org/10.1186/s12944-018-0657-0
doi: 10.1186/s12944-018-0657-0 pmcid: 6303848 pubmed: 30579356
Costelli P, Carbo N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argiles JM, Baccino FM (1993) Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest 92:2783–2789. https://doi.org/10.1172/JCI116897
doi: 10.1172/JCI116897 pmcid: 288478 pubmed: 8254032
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS et al (2018) Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle 9:987–1002. https://doi.org/10.1002/jcsm.12354
doi: 10.1002/jcsm.12354 pmcid: 6204589 pubmed: 30328290
Rorabaugh BR, Mabe NW, Seeley SL, Stoops TS, Mucher KE, Ney CP et al (2020) Myocardial fibrosis, inflammation, and altered cardiac gene expression profiles in rats exposed to a predator-based model of posttraumatic stress disorder. Stress 23:125–135. https://doi.org/10.1080/10253890.2019.1641081
doi: 10.1080/10253890.2019.1641081 pubmed: 31347429
Valenzuela CA, Zuloaga R, Mercado L, Einarsdottir IE, Bjornsson BT, Valdes JA, Molina A (2018) Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish. Am J Physiol Regul Integr Comp Physiol 14:R102–R113. https://doi.org/10.1152/ajpregu.00009.2017
doi: 10.1152/ajpregu.00009.2017
Saulnier RJ, Best C, Kostyniuk DJ, Gilmour KM, Lamarre SG (2021) Chronic social stress alters protein metabolism in juvenile rainbow trout, oncorhynchus mykiss. J Comp Physiol B 191:517–530. https://doi.org/10.1007/s00360-021-01340-6
doi: 10.1007/s00360-021-01340-6 pmcid: 8043953 pubmed: 33712903
Saxton RA, Sabatini DM (2017) Mtor signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004
doi: 10.1016/j.cell.2017.02.004 pmcid: 5394987 pubmed: 28283069
Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL (2004) Igf-i stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and murf1. Am J Physiol Endocrinol Metab 287:E591-601. https://doi.org/10.1152/ajpendo.00073.2004
doi: 10.1152/ajpendo.00073.2004 pubmed: 15100091
Frosig C, Sajan MP, Maarbjerg SJ, Brandt N, Roepstorff C, Wojtaszewski JF et al (2007) Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase c and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiol 582:1289–1301. https://doi.org/10.1113/jphysiol.2007.136614
doi: 10.1113/jphysiol.2007.136614 pmcid: 2075270 pubmed: 17540697
Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in l6 muscle cells. J Biol Chem 278:15641–15651. https://doi.org/10.1074/jbc.M208984200
doi: 10.1074/jbc.M208984200 pubmed: 12594228
Ogasawara S, Cheng XW, Inoue A, Hu L, Piao L, Yu C et al (2018) Cathepsin k activity controls cardiotoxin-induced skeletal muscle repair in mice. J Cachexia Sarcopenia Muscle 9:160–175. https://doi.org/10.1002/jcsm.12248
doi: 10.1002/jcsm.12248 pubmed: 29058826
Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA et al (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029. https://doi.org/10.1074/jbc.M509134200
doi: 10.1074/jbc.M509134200 pubmed: 16365041
Wu H, Cheng XW, Hu L, Takeshita K, Hu C, Du Q et al (2016) Cathepsin S activity controls injury-related vascular repair in mice via the tlr2-mediated p38mapk and pi3k-akt/p-hdac6 signaling pathway. Arterioscler Thromb Vasc Biol 36:1549–1557. https://doi.org/10.1161/ATVBAHA.115.307110
doi: 10.1161/ATVBAHA.115.307110 pmcid: 4961274 pubmed: 27365406
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C (2019) Cathepsin S deficiency mitigated chronic stress-related neointimal hyperplasia in mice. J Am Heart Assoc 8:e011994. https://doi.org/10.1161/JAHA.119.011994
doi: 10.1161/JAHA.119.011994 pmcid: 6662117 pubmed: 31296090
Tjondrokoesoemo A, Schips TG, Sargent MA, Vanhoutte D, Kanisicak O, Prasad V et al (2016) Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice. J Biol Chem 291:9920–9928. https://doi.org/10.1074/jbc.M116.719054
doi: 10.1074/jbc.M116.719054 pmcid: 4858995 pubmed: 26966179
Yue X, Piao L, Wang H, Huang Z, Meng X, Sasaki T et al (2022) Cathepsin k deficiency prevented kidney damage and dysfunction in response to 5/6 nephrectomy injury in mice with or without chronic stress. Hypertension 79:1713–1723. https://doi.org/10.1161/HYPERTENSIONAHA.122.19137
doi: 10.1161/HYPERTENSIONAHA.122.19137 pubmed: 35726642
Goto H, Inoue A, Piao L, Hu L, Huang Z, Meng X et al (2021) Proliferin-1 ameliorates cardiotoxin-related skeletal muscle repair in mice. Stem Cells Int 2021:9202990. https://doi.org/10.1155/2021/9202990
doi: 10.1155/2021/9202990 pmcid: 8692050 pubmed: 34950212
Piao L, Huang Z, Inoue A, Kuzuya M, Cheng XW (2022) Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in samp10 mice. Stem Cell Res Ther 13:226. https://doi.org/10.1186/s13287-022-02895-z
doi: 10.1186/s13287-022-02895-z pmcid: 9166592 pubmed: 35659361
Piao L, Zhao G, Zhu E, Inoue A, Shibata R, Lei Y et al (2017) Chronic psychological stress accelerates vascular senescence and impairs ischemia-induced neovascularization: the role of dipeptidyl peptidase-4/glucagon-like peptide-1-adiponectin axis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.006421
doi: 10.1161/JAHA.117.006421 pmcid: 5721852 pubmed: 28963101
Long YC, Cheng Z, Copps KD, White MF (2011) Insulin receptor substrates irs1 and irs2 coordinate skeletal muscle growth and metabolism via the akt and ampk pathways. Mol Cell Biol. https://doi.org/10.1128/MCB.00983-10
doi: 10.1128/MCB.00983-10 pubmed: 21135130
Kimura K, Cheng XW, Inoue A, Hu L, Koike T, Kuzuya M (2014) Beta-hydroxy-beta-methylbutyrate facilitates pi3k/akt-dependent mammalian target of rapamycin and foxo1/3a phosphorylations and alleviates tumor necrosis factor alpha/interferon gamma-induced murf-1 expression in c2c12 cells. Nutr Res 34:368–374. https://doi.org/10.1016/j.nutres.2014.02.003
doi: 10.1016/j.nutres.2014.02.003 pubmed: 24774073
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, El Raey MA, Sobeh M (2021) Syzygium jambos extract mitigates pancreatic oxidative stress, inflammation and apoptosis and modulates hepatic irs-2/akt/glut4 signaling pathway in streptozotocin-induced diabetic rats. Biomed Pharmacother 142:112085. https://doi.org/10.1016/j.biopha.2021.112085
doi: 10.1016/j.biopha.2021.112085 pubmed: 34463263
Bao S, Wang X, Cho SB, Wu YL, Wei C, Han S et al (2021) Agriophyllum oligosaccharides ameliorate diabetic insulin resistance through ins-r/irs/glut4-mediated insulin pathway in db/db mice and min6 cells. Front Pharmacol 12:656220. https://doi.org/10.3389/fphar.2021.656220
doi: 10.3389/fphar.2021.656220 pmcid: 8419282 pubmed: 34497509
Yoshida T, Delafontaine P (2020) Mechanisms of igf-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9:1970. https://doi.org/10.3390/cells9091970
doi: 10.3390/cells9091970 pmcid: 7564605 pubmed: 32858949
Meng X, Huang Z, Inoue A, Wang H, Wan Y, Yue X et al (2020) Cathepsin k activity controls cachexia-induced muscle atrophy via the modulation of irs1 ubiquitination. J Cachexia Sarcopenia Muscle 13:1197–1209. https://doi.org/10.1002/jcsm.12919(2022)
doi: 10.1002/jcsm.12919(2022)
Jin X, Jin C, Nakamura K, Jin T, Xin M, Wan Y et al (2020) Increased dipeptidyl peptidase-4 accelerates chronic stress-related thrombosis in a mouse carotid artery model. J Hypertens 38:1504–1513. https://doi.org/10.1097/HJH.0000000000002418
doi: 10.1097/HJH.0000000000002418 pubmed: 32205561
Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D et al (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting tnf-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21:786–794. https://doi.org/10.1038/nm.3869
doi: 10.1038/nm.3869 pubmed: 26053624
Yujra VQ, Antunes HKM, Monico-Neto M, Pisani LP, Santamarina AB, Quintana HT et al (2018) Sleep deprivation induces pathological changes in rat masticatory muscles: Role of toll like signaling pathway and atrophy. J Cell Biochem 119:2269–2277. https://doi.org/10.1002/jcb.26389
doi: 10.1002/jcb.26389 pubmed: 28857246
Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A et al (2018) Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of nox2 activity. Free Radic Biol Med 129:504–519. https://doi.org/10.1016/j.freeradbiomed.2018.10.422
doi: 10.1016/j.freeradbiomed.2018.10.422 pubmed: 30342191
Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M et al (2010) Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1. Nature 464:1313–1319. https://doi.org/10.1038/nature08991
doi: 10.1038/nature08991 pubmed: 20357764
Inoue A, Cheng XW, Huang Z, Hu L, Kikuchi R, Jiang H et al (2017) Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/adipor1 activation in samp10 mice. J Cachexia Sarcopenia Muscle 8:370–385. https://doi.org/10.1002/jcsm.12166
doi: 10.1002/jcsm.12166 pubmed: 27897419
Yue X, Jiang H, Xu Y, Xia M, Cheng XW (2020) Cathepsin k deficiency impaired ischemia-induced neovascularization in aged mice. Stem Cells Int 2020:6938620. https://doi.org/10.1155/2020/6938620
doi: 10.1155/2020/6938620 pmcid: 7346230 pubmed: 32676120
Zhang X, Luo S, Wang M, Shi GP (2020) Cysteinyl cathepsins in cardiovascular diseases. Biochim Biophys Acta Proteins Proteom 1868:140360. https://doi.org/10.1016/j.bbapap.2020.140360
doi: 10.1016/j.bbapap.2020.140360 pmcid: 7029168 pubmed: 31926332
Xia B, Li Q, Wu J, Yuan X, Wang F, Lu X et al (2022) Sinomenine confers protection against myocardial ischemia reperfusion injury by preventing oxidative stress, cellular apoptosis, and inflammation. Front Pharmacol 13:922484. https://doi.org/10.3389/fphar.2022.922484
doi: 10.3389/fphar.2022.922484 pmcid: 9274168 pubmed: 35837272
Chou WC, Tsai KL, Hsieh PL, Wu CH, Jou IM, Tu YK, Ma CH (2022) Galectin-3 facilitates inflammation and apoptosis in chondrocytes through upregulation of the tlr-4-mediated oxidative stress pathway in tc28a2 human chondrocyte cells. Environ Toxicol 37:478–488. https://doi.org/10.1002/tox.23414
doi: 10.1002/tox.23414 pubmed: 34894372
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ (2022) Cathepsin S (CTSS) activity in health and disease - a treasure trove of untapped clinical potential. Mol Aspects Med. https://doi.org/10.1016/j.mam.2022.101106
doi: 10.1016/j.mam.2022.101106 pubmed: 35868042

Auteurs

Ying Wan (Y)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.

Limei Piao (L)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China. piaolimei@163.com.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China. piaolimei@163.com.

Shengnan Xu (S)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.

Xiangkun Meng (X)

Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China.

Zhe Huang (Z)

Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan.

Aiko Inoue (A)

Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan.

Hailong Wang (H)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.

Xueling Yue (X)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.

Xueying Jin (X)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.

Yongshan Nan (Y)

Department of Anesthesiology, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China. 15526770526@163.com.

Guo-Ping Shi (GP)

Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Toyoaki Murohara (T)

Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan.

Hiroyuki Umegaki (H)

Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan.
Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan.

Masafumi Kuzuya (M)

Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan.
Meitetsu Hospital, Nagoya, Aichi, 451-8511, Japan.

Xian Wu Cheng (XW)

Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China. chengxw0908@163.com.
Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China. chengxw0908@163.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH