Application of the break-even point to express the bone dynamics around implants.

Animal study Biocompatible material Bone formation Collagen membrane Histology Osteoclasts Sinus floor elevation

Journal

Oral and maxillofacial surgery
ISSN: 1865-1569
Titre abrégé: Oral Maxillofac Surg
Pays: Germany
ID NLM: 101319632

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 17 05 2023
accepted: 12 08 2023
medline: 17 8 2023
pubmed: 17 8 2023
entrez: 17 8 2023
Statut: aheadofprint

Résumé

The aim of this study was to apply the break-even point concept to express the dynamics of bone formation and resorption around implants. Published data on new bone and parent bone densities around implants from one human and three dog studies were selected and used for analysis. The break-even point (BEP) of the bone density (BD) was assessed. The BEP is the point at which, in a graph, the lines representing the formation of new bone and resorption of old bone intersect. BEP is expressed in time (x; days) of occurrence and percentage of bone (y; %) at which the break-even point occurs and illustrates the grade of bone modeling. The sooner the occurrence, the faster the bone formation in relation to the resorption of the old bone. In the marrow and cortical compartments, BEP of bone density occurred after 7.9 days (BD% 24.5%) and >30 days, respectively. Different surfaces presented similar BEP, ranging between 9.7 and 11.2 days (BD% 19.1-22.5%). BEP at implants installed in the human maxilla occurred after 29-30.4 days (BD% 28.3-29.6%). The present study showed that the parameters used to express the break-even point can provide information on the influence of the model used, surface characteristics, and bone quality on bone modeling/remodeling around implants.

Identifiants

pubmed: 37589916
doi: 10.1007/s10006-023-01176-0
pii: 10.1007/s10006-023-01176-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Botticelli D, Lang NP (2017) Dynamics of osseointegration in various human and animal models - a comparative analysis. Clin Oral Implants Res 28(6):742–748. https://doi.org/10.1111/clr.12872
doi: 10.1111/clr.12872 pubmed: 27214566
Rossi F, Lang NP, De Santis E, Morelli F, Favero G, Botticelli D (2014) Bone-healing pattern at the surface of titanium implants: an experimental study in the dog. Clin Oral Implants Res 25(1):124–131. https://doi.org/10.1111/clr.12097
doi: 10.1111/clr.12097 pubmed: 23289845
Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP (2011) The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res 22(4):357–364. https://doi.org/10.1111/j.1600-0501.2010.02107.x
doi: 10.1111/j.1600-0501.2010.02107.x pubmed: 21561477
Caneva M, Lang NP, Garcia Rangel IJ, Ferreira S, Caneva M, De Santis E, Botticelli D (2017) Sinus mucosa elevation using Bio-Oss® or Gingistat® collagen sponge: an experimental study in rabbits. Clin Oral Implants Res 28(7):e21–e30. https://doi.org/10.1111/clr.12850
doi: 10.1111/clr.12850 pubmed: 27080163
Godoy EP, Alccayhuaman KAA, Botticelli D, Amaroli A, Balan VF, Silva ER, Xavier SP (2021) Osteoconductivity of bovine xenograft granules of different sizes in sinus lift: a histomorphometric study in rabbits. Dent J (Basel) 9(6):61. https://doi.org/10.3390/dj9060061
doi: 10.3390/dj9060061 pubmed: 34072644
Caroprese M, Lang NP, Rossi F, Ricci S, Favero R, Botticelli D (2017) Morphometric evaluation of the early stages of healing at cortical and marrow compartments at titanium implants: an experimental study in the dog. Clin Oral Implants Res 28(9):1030–1037. https://doi.org/10.1111/clr.12913
doi: 10.1111/clr.12913 pubmed: 27354261
Favero V, Lang NP, Favero R, Carneiro Martins Neto E, Salata LA, Botticelli D (2017) Sequential morphometric evaluation at UnicCa(®) and SLActive(®) implant surfaces. An experimental study in the dog. Clin Oral Implants Res 28(9):1023–1029. https://doi.org/10.1111/clr.12906
doi: 10.1111/clr.12906 pubmed: 27302198
Favero V, Lang NP, Favero R, Antunes AA, Salata LA, Botticelli D (2017) Sequential morphometric evaluation at UnicCa(®) and DCD(®) implant surfaces. An experimental study in the dog. Clin Oral Implants Res 28(7):833–839. https://doi.org/10.1111/clr.12888
doi: 10.1111/clr.12888 pubmed: 27252082
Sakuma S, Piattelli A, Baldi N, Ferri M, Iezzi G, Botticelli D (2020) Bone healing at implants installed in sites prepared either with a sonic device or drills. A split-mouth histomorphometric randomized controlled trial. Int J Oral Maxillofac Implants 35(1):187–195. https://doi.org/10.11607/jomi.7481
doi: 10.11607/jomi.7481 pubmed: 31923301
Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A (2018) Osseointegration and foreign body reaction: Ti-tanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation. Clin Implant Dent Relat Res 20(1):82–91. https://doi.org/10.1111/cid.12578
doi: 10.1111/cid.12578 pubmed: 29283206
Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. A model study in the dog. Clin Oral Implant Res 14:251–262. https://doi.org/10.1034/j.1600-0501.2003.00972.x
doi: 10.1034/j.1600-0501.2003.00972.x
Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implant Res 15:381–392. https://doi.org/10.1111/j.1600-0501.2004.01082.x
doi: 10.1111/j.1600-0501.2004.01082.x
Caroprese M, Lang NP, Baffone GM, Ricci S, Caneva M, Botticelli D (2016) Histomorphometric analysis of bone healing at implants with turned or rough surfaces: an experimental study in the dog. J Oral Science Rehabilitation 2(4):74–79
Rea M, Botticelli D, Ricci S, Soldini C, González GG, Lang NP (2015) Influence of immediate loading on healing of implants installed with different insertion torques—an experimental study in dogs. Clin Oral Implant Res 26(1):90–95. https://doi.org/10.1111/clr.12305
doi: 10.1111/clr.12305
Jensen SS, Aaboe M, Janner SF, Saulacic N, Bornstein MM, Bosshardt DD, Buser D (2015) Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: a histomorphometric study in minipigs. Clin Implant Dent Relat Res 17:274–285. https://doi.org/10.1111/cid.12101
doi: 10.1111/cid.12101 pubmed: 23789644

Auteurs

Yoshihiko Hori (Y)

Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.

Yoshiyuki Amari (Y)

Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan.

Hiroyuki Ohnishi (H)

Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.

Hitoshi Seo (H)

Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.

Yeh-Chun Chi (YC)

Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.

Daniele Botticelli (D)

ARDEC Academy, viale Giovanni Pascoli 67, 47923, Rimini, Italy. daniele.botticelli@gmail.com.

Samuel Porfirio Xavier (SP)

Oral and Maxillofacial Surgery and Periodontology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Shunsuke Baba (S)

Department of Oral Implantology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.

Classifications MeSH