Projected climate extremes over agro-climatic zones of Ganga River Basin under 1.5, 2, and 3° global warming levels.

CMIP6 Extreme Indices Precipitation Temperature Warming levels

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 16 03 2023
accepted: 01 08 2023
medline: 21 8 2023
pubmed: 18 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Recurring floods, droughts, heatwaves, and other hydro-meteorological extreme events are likely to be increased under the climate change scenarios. The increased risk of these extreme events might have more exposure to the population; thus, it is important to discuss such extreme events and their projected behavior under a changing climate scenario. In the present study, we have computed the extreme precipitation and temperature indices over the 10 agro-climatic zones falling under the Ganga River Basin (GRB)utilizing a high-resolution daily gridded temperature and precipitation multi-model ensembled CMIP6 dataset (0.25° × 0.25°) under global warming levels of 1.5 °C, 2 °C, and 3 °C. We found that the annual daily minimum temperature (TNN) showed a higher rise of about 67% than the maximum temperature (TXX) of 48% in GRB. The basin also experiences a greater increase in the frequency of warm nights (TN90P) of about 67.71% compared to warm days (TX90P) of 29.1% for the 3 °C global warming level. Along with extreme indices, the population exposed due to the impact of the extreme maximum temperature has also been analyzed for progressive warming levels. Population exposure to extreme temperature event (TXX) has been analyzed with 20-year return period using GEV distribution method. The study concludes that the exposed population to extreme temperature event experienced an increase from 46.99 to 52.16% for the whole Ganga Basin. Consecutive dry days (CDD) and consecutive wet days (CWD) both show a significant increasing trend, but CWD has a significant increase in the majority of the zones, while CDD shows a significant decreasing trend for some of the zones for three warming levels periods. Extreme climate indices help to understand the frequency and intensity of extreme weather events such as heavy rainfall, droughts, and heatwaves to develop early warning systems and adaptation strategies to mitigate such events.

Identifiants

pubmed: 37592096
doi: 10.1007/s10661-023-11663-2
pii: 10.1007/s10661-023-11663-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1062

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Adhikari, U., Nejadhashemi, A. P., & Woznicki, S. A. (2015). Climate change and eastern Africa: A review of impact on major crops. Food and Energy Security, 4(2), 110–132.
Akinsanola, A. A., Kooperman, G. J., Pendergrass, A. G., et al. (2020). Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environmental Research Letters, 15, 94003.
Akinsanola, A. A., Ongoma, V., & Kooperman, G. J. (2021). Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmospheric Research, 254(7), 105509. https://doi.org/10.1016/j.atmosres.2021.105509
Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Systems and Environment, 4, 297–320.
Ayugi, B., Zhihong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., & Dike, V. (2021). Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. International Journal of Climatology, 41(15), 6474–6496.
Bhatt, D., Mall, R. K., Raju, K. N. P., & Suryavanshi, S. (2022). Multivariate drought analysis for the temperature homogeneous regions of India: lessons from the Gomati River basin. Meteorological Applications, 29(2), 1. https://doi.org/10.1002/met.2044
Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239.
Carleton, T. A. & Hsiang, S. M. (2016). Social and economic impacts of climate. Science, 353(6304).
Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., & Meinke, H. (2017). The impact of extreme climatic events on pasture-based dairy systems: A review. Crop and Pasture Science, 68(12), 1158–1169.
Chaubey, P. K., Mall, R. K., Jaiswal, R., & Payra, S. (2022). Spatio-temporal changes in extreme rainfall events over different Indian river basins. Earth and Space Science, 9(3), 285.
Chen, H., & Sun, J. (2019). Increased population exposure to extreme droughts in China due to 0.5 C of additional warming. Environmental Research Letters, 14(6), 064011.
Chen, H., & Sun, J. (2020). Increased population exposure to precipitation extremes in China under global warming scenarios. Atmospheric and Oceanic Science Letters, 13(1), 63–70.
Chen, H., & Sun, J. (2021). Significant increase of the global population exposure to increased precipitation extremes in the future. Earth’s Future, 9(9), e2020EF001941.
Cheng-Zhi, C., Cong-Jian, L., Dan, X., Xiao-Shan, Z., & Jin, Z. (2021). Global warming and world soybean yields. Journal of Agrometeorology, 23(4), 367–374.
Chhogyel, N., & Kumar, L. (2018). Climate change and potential impacts on agriculture in Bhutan: A discussion of pertinent issues. Agriculture & Food Security, 7(1), 79.
Cogato, A., Meggio, F., De Antoni Migliorati, M., & Marinello, F. (2019). Extreme weather events in agriculture: A systematic review. Sustainability, 11(9), 2547.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., & Shongwe, M. (2013). Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029–1136). Cambridge University Press.
Dagar, V., Khan, M. K., Alvarado, R., Usman, M., Zakari, A., Rehman, A., & Tillaguango, B. (2021). Variations in technical efficiency of farmers with distinct land size across agro-climatic zones: evidence from India. Journal of Cleaner Production, 315, 128109. https://doi.org/10.1016/j.jclepro.2021.128109
Das, J., Manikanta, V., & Umamahesh, N. V. (2022). Population exposure to compound extreme events in India under different emission and population scenarios. Science of the Total Environment, 806, 150424.
Dash, S. K., & Mamgain, A. (2011). Changes in the frequency of different categories of temperature extremes in India. Journal of Applied Meteorology and Climatology, 50(9), 1842–1858.
Dashkhuu, D., Kim, J. P., Chun, J. A., & Lee, W. S. (2015). Long-term trends in daily temperature extremes over Mongolia. Weather and Climate Extremes, 8, 26–33.
Dell, M., Jones, B. F., & Olken, B. A. (2008). Climate change and economic growth: evidence from the last half century (No. w14132). National Bureau of Economic Research.
Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal: Macroeconomics, 4(3), 66–95.
Demertzis, K., & Iliadis, L. (2018). The impact of climate change on biodiversity: the ecological consequences of invasive species in Greece. In Handbook of climate change communication: Vol. 1 (pp. 15–38). Springer, Cham.
Deshpande, N. R., Kothawale, D. R., & Kulkarni, A. (2016). Changes in climate extremes over major river basins of India. International Journal of Climatology, 36(14), 4548–4559. https://doi.org/10.1002/joc.4651
doi: 10.1002/joc.4651
Diallo, I., Sylla, M. B., Giorgi, F., et al. (2012). Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over west Africa for the early 21st century. Int. J. Geophys., 2012, 1–19. https://doi.org/10.1155/2012/972896
doi: 10.1155/2012/972896
Diffenbaugh, N. S., & Burke, M. (2019). Global warming has increased global economic inequality. Proceedings of the National Academy of Sciences, 116(20), 9808–9813.
Diffenbaugh, N. S., Pal, J. S., Trapp, R. J., & Giorgi, F. (2005). Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences, 102(44), 15774–15778.
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., & Caesar, J. (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society, 94(7), 997–1006. https://doi.org/10.1175/BAMS-D-12-00109.1
Dosio, A., Mentaschi, L., Fischer, E. M., & Wyser, K. (2018). Extreme heat waves under 1.5 C and 2 C global warming. Environmental Research Letters, 13(5), 054006.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
doi: 10.5194/gmd-9-1937-2016
Fan, X., Duan, Q., Shen, C., Wu, Y., & Xing, C. (2022). Evaluation of historical CMIP6 model simulations and future projections of temperature over the Pan-Third Pole region. Environmental Science and Pollution Research, 1–16.
FAO. (1983). World food security: A reappraisal of the concepts and approaches. Director Generals Report.
Frame, D., Joshi, M., Hawkins, E., Harrington, L. J., & de Roiste, M. (2017). Population-based emergence of unfamiliar climates. Nature Climate Change, 7(6), 407–411. https://doi.org/10.1038/nclimate3297
doi: 10.1038/nclimate3297
Gao, J. (2020). Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/q7z9-9r69
Gulizia, C. N., Raggio, G. A., Camilloni, I. A., & Saurral, R. I. (2022). Changes in mean and extreme climate in southern South America under global warming of 1.5° C, 2° C, and 3° C. Theoretical and Applied Climatology, 150(1–2), 787–803.
Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under SSP1–1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 590, 125422.
Haan, C. (1977). Statistical methods in hydrology. Iowa StateUniversityPress.
Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7), 585–596.
Handmer, J., Honda, Y., Kundzewicz, Z. W., Arnell, N., Benito, G., Hatfield, J., Mohamed, I. F., Peduzzi, P., Wu, S., Sherstyukov, B., & Takahashi, K. (2012). Changes in impacts of climate extremes: human systems and ecosystems. In Managing the risks of extreme events and disasters to advance climate change adaptation special report of the intergovernmental panel on climate change (pp. 231–290). Intergovernmental Panel on Climate Change.
Ibn Musah, A. A., Du, J., BilaliibUdimal, T., & AbubakariSadick, M. (2018). The nexus of weather extremes to agriculture production indexes and the future risk in Ghana. Climate, 6(4), 86.
IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (p. 3056). Cambridge, UK and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/9781009325844
Iyakaremye, V., Zeng, G., Yang, X., Zhang, G., Ullah, I., Gahigi, A., & Ayugi, B. (2021). Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Science of The Total Environment, 790, 148162.
Jones, B., & O’Neill, B. C. (2016). Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, 11(8), 084003.
Jones, B., O’Neill, B. C., McDaniel, L., McGinnis, S., Mearns, L. O., & Tebaldi, C. (2015). Future population exposure to US heat extremes. Nature Climate Change, 5(7), 652–655.
Katopodis, T., Sfetsos, A., & Adamides, E. D. (2021). Vulnerability and impact assessment of extreme climate events in the Greek oil industry. In Sustainable cities and resilience (pp. 69–84). Singapore: Springer. https://doi.org/10.1007/978-981-16-5543-2_6
Koteswara Rao, K., Lakshmi Kumar, T. V., Kulkarni, A., Chowdary, J. S., & Desamsetti, S. (2022). Characteristic changes in climate projections over Indus Basin using the bias corrected CMIP6 simulations. Climate Dynamics, 58(11–12), 3471–3495.
Lee, O., Seo, J., Won, J., Choi, J., & Kim, S. (2021). Future extreme heat wave events using Bayesian heat wave intensity-persistence day-frequency model and their uncertainty. Atmospheric Research, 255(5), 105541. https://doi.org/10.1016/j.atmosres.2021.105541
Li, D., Zhou, T., Zou, L., Zhang, W., & Zhang, L. (2018). Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophysical Research Letters, 45, 1541–1550. https://doi.org/10.1002/2017GL076753
doi: 10.1002/2017GL076753
Li, G., Xie, S., Du, Y., et al. (2016). Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dynamics, 47, 3817–3831. https://doi.org/10.1007/s00382-016-3043-5
doi: 10.1007/s00382-016-3043-5
Li, Z., Fang, G., Chen, Y., Duan, W., & Mukanov, Y. (2020). Agricultural water demands in Central Asia under 1.5° C and 2.0° C global warming. Agricultural Water Management, 231, 106020.
Li, Z., Guo, X., Yang, Y., Hong, Y., Wang, Z., & You, L. (2019). Heatwave trends and the population exposure over China in the 21st century as well as under 1.5 C and 2.0 C global warmer future scenarios. Sustainability, 11(12), 3318.
Ma, F., & Yuan, X. (2021). Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Science of the Total Environment, 772, 145004.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., & Samaniego, L. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017–1032.
Maurya, H. K., Joshi, N., Swami, D., & Suryavanshi, S. (2023). Change in temperature extremes over India under 1.5° C and 2° C global warming targets. Theoretical and Applied Climatology, 152(1–2), 57–73.
Mechoso, C. R., Arakawa, A., & Angeles, L. (2015). General circulation models. Edisi Second Edition. Elsevier. Encyclopedia of Atmospheric Sciences.
Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., & Whetton, P. (2000). Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society, 81(3), 427–436.
Mendelsohn, R., Dinar, A., & Williams, L. (2006). The distributional impact of climate change on rich and poor countries. Environment and development economics, 159–178.
Mirza, M. M. Q. (2003). Climate change and extreme weather events: Can developing countries adapt? Climate Policy, 3(3), 233–248.
Mishra, P. K., Thayyen, R. J., Singh, H., Das, S., Nema, M. K., & Kumar, P. (2022). Assessment of cloudbursts, extreme rainfall and vulnerable regions in the Upper Ganga basin, Uttarakhand, India. International Journal of Disaster Risk Reduction, 69, 102744. https://doi.org/10.1080/02626667.2021.1976783
Mishra, V., Bhatia, U., & Tiwari, A. D. (2020a). Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Scientific Data, 7(1), 338.
Mishra, V., Bhatia, U., & Tiwari, A. D. (2020b). Bias corrected climate projections from CMIP6 models for South Asia. Zenodo. https://doi.org/10.5281/zenodo.3873998
doi: 10.5281/zenodo.3873998
Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G., Guillod, B. P., ... & Allen, M. (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters, 11(7), 074006.
Mittal, N., Mishra, A., Singh, R., & Kumar, P. (2014). Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models. Climatic Change, 123(2), 273–286. https://doi.org/10.1007/s10584-014-1056-9
Mondal, S. K., Huang, J., Wang, Y., Su, B., Kundzewicz, Z. W., Jiang, S., ... & Jiang, T (2022). Changes in extreme precipitation across South Asia for each 0.5 °C of warming from 1.5 °C to 3.0 °C above pre-industrial levels. In Atmospheric Research, 266(1), 105961. https://doi.org/10.1016/j.atmosres.2021.105961
Moore, F. C., & Diaz, D. B. (2015). Temperature impacts on economic growth warrant stringent mitigation policy. Nature Climate Change, 5(2), 127.
Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V., & Barba, E. W. (2018). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change, 8(12), 1062–1071.
Nangombe, S. S., Zhou, T., Zhang, W., Zou, L., & Li, D. (2019). High‐temperature extreme events over Africa under 1.5 and 2 C of global warming. Journal of Geophysical Research: Atmospheres, 124(8), 4413–4428.
Nepal, S., & Shrestha, A. B. (2015). Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature. International Journal of Water Resources Development, 31(2), 201–218.
Orimoloye, I. R., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., & Nel, W. (2019). Implications of climate variability and change on urban and human health: A review. Cities, 91, 213–223.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., & Dubash, N. K. (2014a). Climate change 2014a: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
Pachauri, R. K., Meyer, L. A., & IPCC,. (2014b). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
Panagoulia, D., Economou, P., & Caroni, C. (2014). Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change. Environmetrics, 25(1), 29–43.
Panda, D. K., Mishra, A., Kumar, A., Mandal, K. G., Thakur, A. K., & Srivastava, R. C. (2014). Spatiotemporal patterns in the mean and extreme temperature indices of India, 1971–2005. International Journal of Climatology, 34(13), 3585–3603.
Parain, E. C., Rohr, R. P., Gray, S. M., & Bersier, L. F. (2019). Increased temperature disrupts the biodiversity–ecosystem functioning relationship. The American Naturalist, 193(2), 227–239.
Parey, S., Hoang, T. T. H., & Dacunha-Castelle, D. (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics, 21(7–8), 698–718.
Peng, X., She, Q., Long, L., Liu, M., Xu, Q., Zhang, J., & Xiang, W. (2017). Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China. Atmospheric Research, 195, 20–30.
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. -L., & Hong, T. (2020). Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 5(2), 150–159. https://doi.org/10.1038/s41560-020-0558-0
Planton, S., Déqué, M., Chauvin, F., & Terray, L. (2008). Expected impacts of climate change on extreme climate events. ComptesRendus Geoscience, 340(9–10), 564–574. https://doi.org/10.1016/j.crte.2008.07.009
Pörtner, H. -O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., & Rama, B. (2022). Climate change 2022: impacts, adaptation, and vulnerability. Contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
Pretis, F., Schwarz, M., Tang, K., Haustein, K., & Allen, M. R. (2018). Uncertain impacts on economic growth when stabilizing global temperatures at 1.5 C or 2 C warming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160460.
Rahman, R., & Zafarullah, H. (2020). Impact of climate change on human health: Adaptation challenges in Queensland. Australia. Climate Research, 80(1), 59–72.
Rai, P. K., Singh, G. P., & Dash, S. K. (2020). Projected changes in extreme precipitation events over various subdivisions of India using RegCM4. Climate Dynamics, 54, 247–272.
Rani, S., Kumar, R., & Maharana, P. (2022). Climate change, its impacts, and sustainability issues in the Indian Himalaya: an introduction. In Climate Change (pp. 1–27). Springer, Cham.
Rao, K. K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Sabade, S. S., & Kumar, K. K. (2014). Projected changes in mean and extreme precipitation indices over India using PRECIS. Global and Planetary Change, 113, 77–90.
Reddy, N. M., & Saravanan, S. (2023). Extreme precipitation indices over India using CMIP6: A special emphasis on the SSP585 scenario. Environmental Science and Pollution Research, 30(16), 47119–47143.
Revadekar, J. V., Kothawale, D. R., Patwardhan, S. K., Pant, G. B., & Rupa Kumar, K. (2012). About the observed and future changes in temperature extremes over India. Natural Hazards, 60, 1133–1155.
Rohat, G., Flacke, J., Dosio, A., Dao, H., & van Maarseveen, M. (2019). Projections of human exposure to dangerous heat in African cities under multiple socioeconomic and climate scenarios. Earth’s Future, 7(5), 528–546.
Russo, S., Sillmann, J., Sippel, S., Barcikowska, M. J., Ghisetti, C., Smid, M., & O’Neill, B. (2019). Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications, 10(1), 136. https://doi.org/10.1038/s41467-018-08070-4
Rusticucci, M., & Zazulie, N. (2021). Attribution and projections of temperature extreme trends in South America based on CMIP5 models. Ann N Y Acad Sci n/a. https://doi.org/10.1111/nyas.14591
doi: 10.1111/nyas.14591
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M., Hare, W., & Schaeffer, M. (2016). Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth System Dynamics, 7, 327–351. https://doi.org/10.5194/esd-7-327-2016
doi: 10.5194/esd-7-327-2016
Sen Roy, S., & Balling, R. C., Jr. (2004). Trends in extreme daily precipitation indices in India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(4), 457–466.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., & Reichstein, M. (2012). Changes in climate extremes and their impacts on the natural physical environment. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 109–230.
Shafq, M. U., Rasool, R., Ahmed, P., & Dimri, A. P. (2019). Temperature and precipitation trends in Kashmir valley, north western Himalayas. Theoretical and Applied Climatology, 135, 293–304. https://doi.org/10.1007/s00704-018-2377-9
doi: 10.1007/s00704-018-2377-9
Sharma, A., & Goyal, M. K. (2020). Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmospheric Research, 231, 104670.
Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19(13), 3088–3111. https://doi.org/10.1175/JCLI3790.1
Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S. L. S. M., ... & Shrestha, M. L. (2015). Trends in extreme daily rainfall and temperature indices over South Asia. International Journal of Climatology, 35(7), 1625–1637.
Siddha, S., & Sahu, P. (2022). Impact of climate change on the river ecosystem. In Ecological significance of river ecosystems (pp. 79–104). Elsevier.
Simolo, C., & Corti, S. (2022). Quantifying the role of variability in future intensification of heat extremes. Nature Communications, 13(1), 7930.
Singh, R., & Kumar, R. (2019). Climate versus demographic controls on water availability across India at 1.5 C, 2.0 C and 3.0 C global warming levels. Global and Planetary Change, 177, 1–9.
Skansi, M. D. L. M., Brunet, M., Sigró, J., et al. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change, 100, 295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004
doi: 10.1016/j.gloplacha.2012.11.004
Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., & Feng, M. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306–312.
Smirnov, O., Zhang, M., Xiao, T., Orbell, J., Lobben, A., & Gordon, J. (2016). The relative importance of climate change and population growth for exposure to future extreme droughts. Climatic Change, 138(1), 41–53.
Stillman, J. H. (2019). Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology, 34(2), 86–100.
Strauss, F., Formayer, H., & Schmid, E. (2013). High resolution climate data for Austria in the period 2008–2040 from a statistical climate change model. International Journal of Climatology, 33(2), 430–443.
Sun, Q., Miao, C., Hanel, M., Borthwick, A. G., Duan, Q., Ji, D., & Li, H. (2019). Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 128, 125–136.
Swarnkar, S., Prakash, S., Joshi, S. K., & Sinha, R. (2021). Spatio-temporal rainfall trends in the Ganga River Basin over the last century: understanding feedback and hydrological impacts. Hydrological Sciences Journal, 66(14), 2074–2088. https://doi.org/10.1080/02626667.2021.1976783
Thayyen, R. J., Mishra, P. K., Jain, S. K., Wani, J. M., Singh, H., Singh, M. K., & Yadav, B., (2021). Hanging glacier avalanche (Raunthigad - Rishiganga) and debris flow disaster of 7th February 2021, Uttarakhand, India, a preliminary assessment. https://doi.org/10.21203/rs.3.rs-340429/v1
The Global Climate: 2011–15, United Nations Framework Convention on Climate Change. (2016). ISBN: 978–92–63–11179–1.
Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: a review. Food Research International, 43(7), 1745–1765.A
Tong, S., & Ebi, K. (2019). Preventing and mitigating health risks of climate change. Environmental Research, 174, 9–13.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., ... & Evans, T. (2021). Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences, 118(41), e2024792118.
Urama, N. E., Eboh, E. C., & Onyekuru, A. (2019). Impact of extreme climate events on poverty in Nigeria: A case of the 2012 flood. Climate and Development, 11(1), 27–34. https://doi.org/10.1080/17565529.2017.1372267
doi: 10.1080/17565529.2017.1372267
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D., McCann, K. S., Savage, V., Tunney, T. D., & O’Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281(1779), 20132612.
Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C., & Jacob, D. (2014). The European climate under a 2° C global warming. Environmental Research Letters, 9(3), 034006.
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5), 054010.
Weber, T., Bowyer, P., Rechid, D., Pfeifer, S., Raffaele, F., Remedio, A. R., Teichmann, C., & Jacob, D. (2020). Analysis of compound climate extremes and exposed population in Africa under two different emission scenarios. Earth’s Future, 8(9), e2019EF001473.
Yadav, B. C., Thayyen, R. J., & Jain, K. (2020). Topoclimatic zones and characteristics of the upper Ganga basin, Uttarakhand, India. International Journal of Climatology, 40(14), 6002–6019.
Yehia, A .G., Fahmy, K. M., Mehany, M. A. S., & Mohamed, G. G. (2017). Impact of extreme climate events on water supply sustainability in Egypt: case studies in Alexandria region and Upper Egypt. Journal of Water and Climate Change, 8(3), 484–494. https://doi.org/10.2166/wcc.2017.111
Yin, J., Guo, S., Wang, J., Chen, J., Zhang, Q., Gu, L., ... & Zhang, Y. (2023). Thermodynamic driving mechanisms for the formation of global precipitation extremes and ecohydrological effects. Science China Earth Sciences, 66(1), 92–110.
Yosef, Y., Aguilar, E., & Alpert, P. (2019). Changes in extreme temperature and precipitation indices: Using an innovative daily homogenized database in Israel. International Journal of Climatology, 39(13), 5022–5045.
Yue, S., & Pilon, P. (2004). A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrological Sciences Journal, 49(1), 21–37.
Yue, Y., Yan, D., Yue, Q., Ji, G., & Wang, Z. (2021). Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric Research, 264, 105828.
Zhan, Y. J., Ren, G. Y., Shrestha, A. B., Rajbhandari, R., Ren, Y. Y., Sanjay, J., ... & Wang, S. (2017). Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Advances in Climate Change Research, 8(3), 166–175.
Zhang, Q., Li, J., David Chen, Y., & Chen, X. (2011a). Observed changes of temperature extremes during 1960–2005 in China: Natural or human-induced variations? Theoretical and Applied Climatology, 106, 417–431.
Zhang, W., Zhou, T., Zou, L., Zhang, L., & Chen, X. (2018). Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nature Communications, 9(1), 3153. https://doi.org/10.1038/s41467-018-05633-3
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., ... & Zwiers, F. W. (2011b). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870.
Zhao, W., Chou, J., Li, J., Xu, Y., Li, Y., & Hao, Y. (2022). Impacts of extreme climate events on future rice yields in global major rice-producing regions. International journal of environmental research and public health, 19(8). https://doi.org/10.3390/ijerph19084437
Zhou, Y., & Ren, G. (2011). Change in extreme temperature event frequency over mainland China, 1961–2008. Climate Research, 50(2–3), 125–139.
Ziv, B., Saaroni, H., Pargament, R., Harpaz, T., & Alpert, P. (2014). Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Regional Environmental Change, 14(5), 1751–1764. https://doi.org/10.1007/s10113-013-0414-x

Auteurs

Harsh Vardhan Singh (HV)

Department of Civil Engineering, Indian Institute of Technology Jammu, Jammu, India.

Nitin Joshi (N)

Department of Civil Engineering, Indian Institute of Technology Jammu, Jammu, India.

Shakti Suryavanshi (S)

Scientist 'C', National Institute of Hydrology, Roorkee, India. suryavanshi.shakti@gmail.com.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH