Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review.

Collateral circulation Endothelial progenitor cells Indirect revascularization Moyamoya disease Vascular endothelial growth factor

Journal

Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 29 06 2023
accepted: 02 08 2023
revised: 01 08 2023
medline: 18 8 2023
pubmed: 18 8 2023
entrez: 17 8 2023
Statut: aheadofprint

Résumé

Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.

Identifiants

pubmed: 37592190
doi: 10.1007/s12975-023-01185-x
pii: 10.1007/s12975-023-01185-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Scott RM, Smith ER. Moyamoya disease and Moyamoya syndrome. N Engl J Med. 2009;360:1226–37. https://doi.org/10.1056/NEJMra0804622 .
doi: 10.1056/NEJMra0804622 pubmed: 19297575
Kuroda S, Houkin K. Moyamoya disease: Current concepts and future perspectives. Lancet Neurol. 2008;7:1056–66. https://doi.org/10.1016/S1474-4422(08)70240-0 .
doi: 10.1016/S1474-4422(08)70240-0 pubmed: 18940695
Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99. https://doi.org/10.1001/archneur.1969.00480090076012 .
doi: 10.1001/archneur.1969.00480090076012 pubmed: 5775283
Kim T, Oh CW, Bang JS, Kim JE, Cho WS. Moyamoya disease: Treatment and outcomes. J Stroke. 2016;18:21–30. https://doi.org/10.5853/jos.2015.01739 .
doi: 10.5853/jos.2015.01739 pubmed: 26846757 pmcid: 4747064
Baba T, Houkin K, Kuroda S. Novel epidemiological features of Moyamoya disease. J Neurol Neurosurg Psychiatry. 2008;79:900–4. https://doi.org/10.1136/jnnp.2007.130666 .
doi: 10.1136/jnnp.2007.130666 pubmed: 18077479
Ihara M, Yamamoto Y, Hattori Y, Liu W, Kobayashi H, Ishiyama H, Yoshimoto T, Miyawaki S, Clausen T, Bang OY, Steinberg GK, Tournier-Lasserve E, Koizumi A. Moyamoya disease: Diagnosis and interventions. Lancet Neurol. 2022;21:747–58. https://doi.org/10.1016/S1474-4422(22)00165-X .
doi: 10.1016/S1474-4422(22)00165-X pubmed: 35605621
Bao XY, Duan L, Li DS, Yang WZ, Sun WJ, Zhang ZS, Zong R, Han C. Clinical features, surgical treatment and long-term outcome in adult patients with Moyamoya disease in China. Cerebrovasc Dis. 2012;34:305–13. https://doi.org/10.1159/000343225 .
doi: 10.1159/000343225 pubmed: 23146868
Bao XY, Duan L, Yang WZ, Li DS, Sun WJ, Zhang ZS, Zong R, Han C. Clinical features, surgical treatment, and long-term outcome in pediatric patients with Moyamoya disease in China. Cerebrovasc Dis. 2015;39:75–81. https://doi.org/10.1159/000369524 .
doi: 10.1159/000369524 pubmed: 25573764
Dusick JR, Gonzalez NR, Martin NA. Clinical and angiographic outcomes from indirect revascularization surgery for Moyamoya disease in adults and children: A review of 63 procedures. Neurosurg. 2011;68:34–43. https://doi.org/10.1227/NEU.0b013e3181fc5ec2 .
doi: 10.1227/NEU.0b013e3181fc5ec2
Matsushima Y, Aoyagi M, Suzuki R, Tabata H, Ohno K. Perioperative complications of encephaloduro-arterio-synangiosis: Prevention and treatment. Surg Neurol. 1991;36:343–53. https://doi.org/10.1016/0090-3019(91)90022-2 .
doi: 10.1016/0090-3019(91)90022-2 pubmed: 1745958
Wang KC, Phi JH, Lee JY, Kim SK, Cho BK. Indirect revascularization surgery for Moyamoya disease in children and its special considerations. Korean J Pediatr. 2012;55:408–13. https://doi.org/10.3345/kjp.2012.55.11.408 .
doi: 10.3345/kjp.2012.55.11.408 pubmed: 23227059 pmcid: 3510269
Houkin K, Kuroda S, Ishikawa T, Abe H. Neovascularization (angiogenesis) after revascularization in Moyamoya disease. Which technique is most useful for moyamoya disease? Acta Neurochir (Wien). 2000;142:269–76. https://doi.org/10.1007/s007010050035 .
doi: 10.1007/s007010050035 pubmed: 10819257
Kim SK, Cho BK, Phi JH, Lee JY, Chae JH, Kim KJ, Hwang YS, Kim IO, Lee DS, Lee J, Wang KC. Pediatric Moyamoya disease: An analysis of 410 consecutive cases. Ann Neurol. 2010;68:92–101. https://doi.org/10.1002/ana.21981 .
doi: 10.1002/ana.21981 pubmed: 20582955
Yamauchi T, Tada M, Houkin K, Tanaka T, Nakamura Y, Kuroda S, Abe H, Inoue T, Ikezaki K, Matsushima T, Fukui M. Linkage of familial Moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25. Stroke. 2000;31:930–5. https://doi.org/10.1161/01.str.31.4.930 .
doi: 10.1161/01.str.31.4.930 pubmed: 10754001
Wu Z, Jiang H, Zhang L, Xu X, Zhang X, Kang Z, Song D, Zhang J, Guan M, Gu Y. Molecular analysis of RNF213 gene for Moyamoya disease in the Chinese Han population. PLOS ONE. 2012;7:e48179. https://doi.org/10.1371/journal.pone.0048179 .
doi: 10.1371/journal.pone.0048179 pubmed: 23110205 pmcid: 3479116
Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, Kanno J, Niihori T, Ono M, Ishii N, Owada Y, Fujimura M, Mashimo Y, Suzuki Y, Hata A, Tsuchiya S, Tominaga T, Matsubara Y, Kure S. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Gent. 2011;56:34–40. https://doi.org/10.1038/jhg.2010.132 .
doi: 10.1038/jhg.2010.132
Duan L, Wei L, Tian Y, Zhang Z, Hu P, Wei Q, Liu S, Zhang J, Wang Y, Li D, Yang W, Zong R, Xian P, Han C, Bao X, Zhao F, Feng J, Liu W, Cao W, et al. Novel susceptibility loci for Moyamoya disease revealed by a genome-wide association study. Stroke. 2018;49:11–8. https://doi.org/10.1161/STROKEAHA.117.017430 .
doi: 10.1161/STROKEAHA.117.017430 pubmed: 29273593
Miyatake S, Miyake N, Touho H, Nishimura-Tadaki A, Kondo Y, Okada I, Tsurusaki Y, Doi H, Sakai H, Saitsu H, Shimojima K, Yamamoto T, Higurashi M, Kawahara N, Kawauchi H, Nagasaka K, Okamoto N, Mori T, Koyano S, et al. Homozygous c.14576G>A variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurol. 2012;78:803–10. https://doi.org/10.1212/WNL.0b013e318249f71f .
doi: 10.1212/WNL.0b013e318249f71f
Zhang Q, Liu Y, Zhang D, Wang R, Zhang Y, Wang S, Yu L, Lu C, Liu F, Zhou J, Zhang X, Zhao J. RNF213 as the major susceptibility gene for Chinese patients with Moyamoya disease and its clinical relevance. J Neurosurg. 2017;126:1106–13. https://doi.org/10.3171/2016.2.JNS152173 .
doi: 10.3171/2016.2.JNS152173 pubmed: 27128593
Kim EH, Yum MS, Ra YS, Park JB, Ahn JS, Kim GH, Goo HW, Ko TS, Yoo HW. Importance of RNF213 polymorphism on clinical features and longterm outcome in Moyamoya disease. J Neurosurg. 2016;124:1221–7. https://doi.org/10.3171/2015.4.JNS142900 .
doi: 10.3171/2015.4.JNS142900 pubmed: 26430847
Wang QN, Yang RM, Zou ZX, Wang XP, Zhang Q, Li DS, Bao XY, Duan L. Predictors of neoangiogenesis after indirect revascularisation in Moyamoya disease: A 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2021;92:1361–2. https://doi.org/10.1136/jnnp-2020-325401 .
doi: 10.1136/jnnp-2020-325401 pubmed: 33785579
Ge P, Zhang Q, Ye X, Liu X, Deng X, Wang J, Wang R, Zhang Y, Zhang D, Zhao J. Angiographic characteristics in Moyamoya disease with the p.R4810K variant: A propensity score-matched analysis. Eur J Neurol. 2020;27:856–63. https://doi.org/10.1111/ene.14184 .
doi: 10.1111/ene.14184 pubmed: 32073714
Zhang Q, Wang R, Liu Y, Zhang Y, Wang S, Cao Y, Zhao Y, Liu X, Wang J, Deng X, Gao F, Yang Z, Zhao M, Ge P, Ma Y, Zhao J, Zhang D. Clinical features and long-term outcomes of unilateral Moyamoya disease. World Neurosurg. 2016;96:474–82. https://doi.org/10.1016/j.wneu.2016.09.018 .
doi: 10.1016/j.wneu.2016.09.018 pubmed: 27647029
Ge P, Ye X, Liu X, Deng X, Wang J, Wang R, Zhang Y, Zhang D, Zhang Q, Zhao J. Association between p.R4810k variant and postoperative collateral formation in patients with Moyamoya disease. Cerebrovasc Dis. 2019;48:1–8. https://doi.org/10.1159/000503250 .
doi: 10.1159/000503250
Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Gen. 1995;10:111–3. https://doi.org/10.1038/ng0595-111 .
doi: 10.1038/ng0595-111
Colson NJ, Naug HL, Nikbakht E, Zhang P, McCormack J. The impact of MTHFR 677 C/T genotypes on folate status markers: A meta-analysis of folic acid intervention studies. Eur J Nutr. 2017;56:247–60. https://doi.org/10.1007/s00394-015-1076-x .
doi: 10.1007/s00394-015-1076-x pubmed: 26497154
Yang B, Fan S, Zhi X, Wang D, Li Y, Wang Y, Wang Y, Wei J, Zheng Q, Sun G. Associations of MTHFR C677T and MTRR A66G gene polymorphisms with metabolic syndrome: A case-control study in Northern China. Int J Mol Sci. 2014;15:21687–702. https://doi.org/10.3390/ijms151221687 .
doi: 10.3390/ijms151221687 pubmed: 25429430 pmcid: 4284672
Dankner R, Chetrit A, Murad H, Sela BA, Frystyk J, Raz I, Flyvbjerg A, et al. Serum adiponectin is associated with homocysteine in elderly men and women, and with 5,10-methylenetetrahydrofolate reductase (MTHFR) in a sex-dependent manner. Metab Clin Exp. 2010;59:1767–74. https://doi.org/10.1016/j.metabol.2010.05.001 .
doi: 10.1016/j.metabol.2010.05.001 pubmed: 20580032
Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: Evidence on a causal link from Mendelian randomization. Lancet. 2005;365:224–32. https://doi.org/10.1016/S0140-6736(05)17742-3 .
doi: 10.1016/S0140-6736(05)17742-3 pubmed: 15652605
Jamison RL, Shih MC, Humphries DE, Guarino PD, Kaufman JS, Goldfarb DS, Warren SR, Gaziano JM, Lavori P. Veterans Affairs Site Investigators. Effect of the MTHFR C677T and A1298C polymorphisms on survival in patients with advanced CKD and ESRD: A prospective study. Am J Kidney Dis. 2009;53:779–89. https://doi.org/10.1053/j.ajkd.2008.12.023 .
doi: 10.1053/j.ajkd.2008.12.023 pubmed: 19272686
Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR Studies Collaboration Group. 677C–>T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA. 2002;288:2023–31. https://doi.org/10.1001/jama.288.16.2023 .
doi: 10.1001/jama.288.16.2023 pubmed: 12387655
Chmurzynska A, Malinowska AM, Twardowska-Rajewska J, Gawecki J. Elderly women: Homocysteine reduction by short-term folic acid supplementation resulting in increased glucose concentrations and affecting lipid metabolism (C677T MTHFR polymorphism). Nutrition. 2013;29:841–4. https://doi.org/10.1016/j.nut.2012.09.015 .
doi: 10.1016/j.nut.2012.09.015 pubmed: 23298970
Castro R, Rivera I, Ravasco P, Jakobs C, Blom HJ, Camilo ME, de Almeida IT. 5,10-Methylenetetrahydrofolate reductase 677C–>T and 1298A–>C mutations are genetic determinants of elevated homocysteine. QJM. 2003;96:297–3. https://doi.org/10.1093/qjmed/hcg039 .
doi: 10.1093/qjmed/hcg039 pubmed: 12651974
Zhou BS, Bu GY, Li M, Chang BG, Zhou YP. Tagging SNPs in the MTHFR gene and risk of ischemic stroke in a Chinese population. International J Mol Sci. 2014;15:8931–40. https://doi.org/10.3390/ijms15058931 .
doi: 10.3390/ijms15058931
Marti F, Vollenweider P, Marques-Vidal PM, Mooser V, Waeber G, Paccaud F, Bochud M. Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health. 2011;11:733. https://doi.org/10.1186/1471-2458-11-733 .
doi: 10.1186/1471-2458-11-733 pubmed: 21943240 pmcid: 3188498
La Rosa S, Uccella S, Finzi G, Albarello L, Sessa F, Capella C. Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: Correlation with microvessel density and clinicopathologic features. Hum Pathol. 2003;34:18–27. https://doi.org/10.1053/hupa.2003.56 .
doi: 10.1053/hupa.2003.56 pubmed: 12605362
Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation. 1996;93:1493–5. https://doi.org/10.1161/01.cir.93.8.1493 .
doi: 10.1161/01.cir.93.8.1493 pubmed: 8608615
Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9. https://doi.org/10.1126/science.2479986 .
doi: 10.1126/science.2479986 pubmed: 2479986
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5. https://doi.org/10.1038/359843a0 .
doi: 10.1038/359843a0 pubmed: 1279431
Kovács Z, Ikezaki K, Samoto K, Inamura T, Fukui M, VEGF and FLT. Expression time kinetics in rat brain infarct. Stroke. 1996;27:1865–72. https://doi.org/10.1161/01.str.27.10.1865 .
doi: 10.1161/01.str.27.10.1865 pubmed: 8841346
Hayashi T, Abe K, Suzuki H, Itoyama Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke. 1997;28:2039–44. https://doi.org/10.1161/01.str.28.10.2039 .
doi: 10.1161/01.str.28.10.2039 pubmed: 9341716
Lennmyr F, Ata KA, Funa K, Olsson Y, Terént A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57:874–82. https://doi.org/10.1097/00005072-199809000-00009 .
doi: 10.1097/00005072-199809000-00009 pubmed: 9737551
Brogan IJ, Khan N, Isaac K, Hutchinson JA, Pravica V, Hutchinson IV. Novel polymorphisms in the promoter and 5’ UTR regions of the human vascular endothelial growth factor gene. Hum Immunol. 1999;60:1245–9. https://doi.org/10.1016/s0198-8859(99)00132-9 .
doi: 10.1016/s0198-8859(99)00132-9 pubmed: 10626738
Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, Inoue I, Katayama S. A common polymorphism in the 5’-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51:1635–9. https://doi.org/10.2337/diabetes.51.5.1635 .
doi: 10.2337/diabetes.51.5.1635 pubmed: 11978667
Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res. 2000;37:443–8. https://doi.org/10.1159/000054076 .
doi: 10.1159/000054076 pubmed: 11146397
Park YS, Jeon YJ, Kim HS, Chae KY, Oh SH, Han IB, Kim HS, Kim WC, Kim OJ, Kim TG, Choi JU, Kim DS, Kim NK. The role of VEGF and KDR polymorphisms in Moyamoya disease and collateral revascularization. PloS One. 2012;7:e47158. https://doi.org/10.1371/journal.pone.0047158 .
doi: 10.1371/journal.pone.0047158 pubmed: 23077562 pmcid: 3470587
Oh J, Matkovich SJ, Riek AE, Bindom SM, Shao JS, Head RD, Barve RA, Sands MS, Carmeliet G, Osei-Owusu P, Knutsen RH, Zhang H, Blumer KJ, Nichols CG, Mecham RP, Baldán Á, Benitez BA, Sequeira-Lopez ML, Gomez RA, Bernal-Mizrachi C. Macrophage secretion of mir- 106b-5p causes renin-dependent hypertension. Nature Comm. 2020;11:4798. https://doi.org/10.1038/s41467-020-18538-x .
doi: 10.1038/s41467-020-18538-x
Parra-Izquierdo I, McCarty OJT, Aslan JE. Platelet mir-223 delivery rescues vascular cells in Kawasaki disease. Circ Res. 2020;127:874–6. https://doi.org/10.1161/CIRCRESAHA.120.317796 .
doi: 10.1161/CIRCRESAHA.120.317796 pubmed: 32910741 pmcid: 7493789
Sun X, Zheng X, Zhang X, Zhang Y, Luo G. Exosomal microrna-23b-3p from bone marrow mesenchymal stem cells maintains T helper/Treg balance by downregulating the pi3k/akt/nf-kappab signaling pathway in intracranial aneurysm. Brain Res Bull. 2020;165:305–15. https://doi.org/10.1016/j.brainresbull.2020.09.003 .
doi: 10.1016/j.brainresbull.2020.09.003 pubmed: 32956770
Wang G, Wen Y, Faleti OD, Zhao Q, Liu J, Zhang G, Li M, Qi S, Feng W, Lyu X. A panel of exosome-derived mirnas of cerebrospinal fluid for the diagnosis of Moyamoya disease. Front Neurosci. 2020;14:548278. https://doi.org/10.3389/fnins.2020.548278 .
doi: 10.3389/fnins.2020.548278 pubmed: 33100957 pmcid: 7546773
Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 2018;22:4568–87. https://doi.org/10.1111/jcmm.13700 .
doi: 10.1111/jcmm.13700 pubmed: 29956461 pmcid: 6156236
Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, Stetler RA, Chen J, Yin KJ. Endothelium-targeted deletion of microrna-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res. 2020;126:1040–57. https://doi.org/10.1161/CIRCRESAHA.119.315886 .
doi: 10.1161/CIRCRESAHA.119.315886 pubmed: 32131693 pmcid: 7172020
Fang M, Wang CG, Zheng C, Luo J, Hou S, Liu K, Li X. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting tgf-beta3 through activation of wnt3/beta-catenin/smad3 signaling. J Cell Biochem. 2018;119:5175–85. https://doi.org/10.1002/jcb.26545 .
doi: 10.1002/jcb.26545 pubmed: 29227539 pmcid: 6001435
Chen C, Ling C, Gong J, Li C, Zhang L, Gao S, Li Z, Huang T, Wang H, Guo Y. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging. 2020;12:13234–54. https://doi.org/10.18632/aging.103431 .
doi: 10.18632/aging.103431 pubmed: 32644942 pmcid: 7377842
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in Moyamoya disease. CNS Neurosci Therapeut. 2021;27:908–18. https://doi.org/10.1111/cns.13646 .
doi: 10.1111/cns.13646
Bang OY, Chung JW, Kim SJ, Oh MJ, Kim SY, Cho YH, Cha J, Yeon JY, Kim KH, Kim GM, Chung CS, Lee KH, Ki CS, Jeon P, Kim JS, Hong SC, Moon GJ. Caveolin-1, Ring finger protein 213, and endothelial function in Moyamoya disease. Int J Stroke. 2016;11:999–1008. https://doi.org/10.1177/1747493016662039 .
doi: 10.1177/1747493016662039 pubmed: 27462098
Fujimura M, Sonobe S, Nishijima Y, Niizuma K, Sakata H, Kure S, Tominaga T. Genetics and biomarkers of Moyamoya disease: Significance of RNF213 as a susceptibility gene. J Stroke. 2014;16:65–72. https://doi.org/10.5853/jos.2014.16.2.65 .
doi: 10.5853/jos.2014.16.2.65 pubmed: 24949311 pmcid: 4060268
Fang YC, Wei LF, Hu CJ, Tu YK. Pathological circulating factors in Moyamoya disease. Int J Mol Sci. 2021;22:1696. https://doi.org/10.3390/ijms22041696 .
doi: 10.3390/ijms22041696 pubmed: 33567654 pmcid: 7915927
Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, Cho BK, Kim SK. Plasma matrix metalloproteinases, cytokines and angiogenic factors in Moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81:673–8. https://doi.org/10.1136/jnnp.2009.191817 .
doi: 10.1136/jnnp.2009.191817 pubmed: 19965844
Sakamoto S, Kiura Y, Yamasaki F, Shibukawa M, Ohba S, Shrestha P, Sugiyama K, Kurisu K. Expression of vascular endothelial growth factor in dura mater of patients with Moyamoya disease. Neurosurg Rev. 2008;31:77–81. https://doi.org/10.1007/s10143-007-0102-8 .
doi: 10.1007/s10143-007-0102-8 pubmed: 17912564
He J, Wang R, Zhang D, Zhang Y, Zhang Q, Zhao J. Expression of circulating vascular endothelial growth factor-antagonizing cytokines and vascular stabilizing factors prior to and following bypass surgery in patients with Moyamoya disease. Exp Ther Med. 2014;8:302–8. https://doi.org/10.3892/etm.2014.1713 .
doi: 10.3892/etm.2014.1713 pubmed: 24944638 pmcid: 4061224
Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71. https://doi.org/10.1038/nrm1911 .
doi: 10.1038/nrm1911 pubmed: 16633338
Takahashi A, Sawamura Y, Houkin K, Kamiyama H, Abe H. The cerebrospinal fluid in patients with Moyamoya disease (spontaneous occlusion of the circle of Willis) contains high level of basic fibroblast growth factor. Neurosci Lett. 1993;160:214–6. https://doi.org/10.1016/0304-3940(93)90416-i .
doi: 10.1016/0304-3940(93)90416-i pubmed: 8247356
Yoshimoto T, Houkin K, Takahashi A, Abe H. Angiogenic factors in Moyamoya disease. Stroke. 1996;27:2160–5. https://doi.org/10.1161/01.str.27.12.2160 .
doi: 10.1161/01.str.27.12.2160 pubmed: 8969773
Tokunaga K, Date I. Moyamoya disease. Brain Nerve. 2008;60:37–42.
pubmed: 18232331
Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV. Human transforming growth factor-b complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316:701–5. https://doi.org/10.1038/316701a0 .
doi: 10.1038/316701a0 pubmed: 3861940
Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A. The serum concentration of active transforming growth factor-b is severely depressed in advanced atherosclerosis. Nat Med. 1995;1:74–9. https://doi.org/10.1038/nm0195-74 .
doi: 10.1038/nm0195-74 pubmed: 7584958
Roder C, Peters V, Kasuya H, Nishizawa T, Takehara Y, Berg D, Schulte C, Khan N, Tatagiba M, Krischek B. Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir. 2010;152:2153–60. https://doi.org/10.1007/s00701-010-0711-9 .
doi: 10.1007/s00701-010-0711-9 pubmed: 20571834
Lu Q, Sun D, Shivhare SB, Hou H, Bulmer JN, Innes BA, Hapangama DK, Lash GE. Transforming growth factor (TGF) beta and endometrial vascular maturation. Front Cell Dev Biol. 2021;9:640065. https://doi.org/10.3389/fcell.2021.640065 .
doi: 10.3389/fcell.2021.640065 pubmed: 33898426 pmcid: 8063037
Hojo M, Hoshimaru M, Miyamoto S, Taki W, Nagata I, Asahi M, Matsuura N, Ishizaki R, Kikuchi H, Hashimoto N. Role of transforming growth factor-beta1 in the pathogenesis of Moyamoya disease. J Neurosurg. 1998;89:623–9. https://doi.org/10.3171/jns.1998.89.4.0623 .
doi: 10.3171/jns.1998.89.4.0623 pubmed: 9761057
Weng L, Cao X, Han L, Zhao H, Qiu S, Yan Y, Wang X, Chen X, Zheng W, Xu X, Gao Y, Chen Y, Li J, Yang Y, Xu Y. Association of increased Treg and Th17 with pathogenesis of Moyamoya disease. Sci Rep. 2017;7:3071. https://doi.org/10.1038/s41598-017-03278-8 .
doi: 10.1038/s41598-017-03278-8 pubmed: 28596558 pmcid: 5465197
Weinberg DG, Arnaout OM, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. Moyamoya disease: A review of histopathology, biochemistry, and genetics. Neurosurg Focus. 2011;30:E20. https://doi.org/10.3171/2011.3.FOCUS1151 .
doi: 10.3171/2011.3.FOCUS1151 pubmed: 21631222
Chen Y, Tang M, Li H, Liu H, Wang J, Huang J. TGFβ1 as a predictive biomarker for collateral formation within ischemic Moyamoya disease. Front Neurol. 2022;13:899470. https://doi.org/10.3389/fneur.2022.899470 .
doi: 10.3389/fneur.2022.899470 pubmed: 35873760 pmcid: 9301205
Ge P, Ye X, Liu X, Deng X, Wang J, Wang R, et al. Angiographic outcomes of direct and combined bypass surgery in Moyamoya disease. Front Neurol. 2019;10:1267. https://doi.org/10.3389/fneur.2019.01267 .
doi: 10.3389/fneur.2019.01267 pubmed: 31849825 pmcid: 6903770
Gadgil N, Lam S, Pyarali M, Paldino M, Pan IW, Dauser RC. Indirect revascularization with the dural inversion technique for pediatric Moyamoya disease: 20-year experience. J Neurosurg Pediatr. 2018;22:541–9. https://doi.org/10.3171/2018.5.PEDS18163 .
doi: 10.3171/2018.5.PEDS18163 pubmed: 30117790
Blecharz-Lang KG, Prinz V, Burek M, Frey D, Schenkel T, Krug SM, Fromm M, Vajkoczy P. Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease. J Cerebr Blood Flow Metab. 2018;38:1940–53. https://doi.org/10.1177/0271678X18768443 .
doi: 10.1177/0271678X18768443
Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, Cho BK, Kim SK. Plasma matrix metalloproteinases, cytokines and angiogenic factors in Moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81:673–8. https://doi.org/10.1136/jnnp.2009.191817 .
doi: 10.1136/jnnp.2009.191817 pubmed: 19965844
Kusaka N, Sugiu K, Tokunaga K, Katsumata A, Nishida A, Namba K, Hamada H, Nakashima H, Date I. Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. J Neurosurg. 2005;103:882–90. https://doi.org/10.3171/jns.2005.103.5.0882 .
doi: 10.3171/jns.2005.103.5.0882 pubmed: 16304993
Pricola Fehnel K, Duggins-Warf M, McKee-Proctor M, Majumder R, Raber M, Han X, Smith ER. Using urinary bFGF and TIMP3 levels to predict the presence of juvenile pilocytic astrocytoma and establish a distinct biomarker signature. J Neurosurg Ped. 2016;18:396–407. https://doi.org/10.3171/2015.12.PEDS15448 .
doi: 10.3171/2015.12.PEDS15448
Sesen J, Driscoll J, Moses-Gardner A, Orbach DB, Zurakowski D, Smith ER. Non-invasive urinary biomarkers in Moyamoya disease. Front Neurol. 2021;12:661952. https://doi.org/10.3389/fneur.2021.661952 .
doi: 10.3389/fneur.2021.661952 pubmed: 33868159 pmcid: 8047329
Zhao Y, Li J, Lu J, Zhang Q, Zhang D, Wang R, Zhao Y, Chen X. Predictors of neoangiogenesis after indirect revascularization in Moyamoya disease: A multicenter retrospective study. J Neurosurg. 2019:1–11. https://doi.org/10.3171/2018.9.JNS181562 .
Lu J, Wang J, Lin Z, Shi G, Wang R, Zhao Y, Zhao Y, Zhao J. MMP-9 as a biomarker for predicting hemorrhagic strokes in Moyamoya disease. Front Neurol. 2021;12:721118. https://doi.org/10.3389/fneur.2021.721118 .
doi: 10.3389/fneur.2021.721118 pubmed: 34531816 pmcid: 8438170
Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K, Kuroda S. Review of past research and current concepts on the etiology of Moyamoya disease. Neurol Med Chir. 2012;52:267–77. https://doi.org/10.2176/nmc.52.267 .
doi: 10.2176/nmc.52.267
Rafat N, Beck GC, Peña-Tapia PG, Schmiedek P, Vajkoczy P. Increased levels of circulating endothelial progenitor cells in patients with Moyamoya disease. Stroke. 2009;40:432–8. https://doi.org/10.1161/STROKEAHA.108.529420 .
doi: 10.1161/STROKEAHA.108.529420 pubmed: 19095988
Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularisation and regeneration. Nat Med. 2003;9:702–12. https://doi.org/10.1038/nm0603-702 .
doi: 10.1038/nm0603-702 pubmed: 12778169
Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004;8:498–508. https://doi.org/10.1111/j.1582-4934.2004.tb00474.x .
doi: 10.1111/j.1582-4934.2004.tb00474.x pubmed: 15601578 pmcid: 6740289
Bao XY, Fan YN, Liu Y, Wang QN, Zhang Y, Zhu B, Liu B, Duan L. Circulating endothelial progenitor cells and endothelial cells in Moyamoya disease. Brain Behav. 2018;8:e01035. https://doi.org/10.1002/brb3.1035 .
doi: 10.1002/brb3.1035 pubmed: 30141248 pmcid: 6160662
Wang QN, Zou ZX, Wang XP, Zhang Q, Zhao YQ, Duan L, Bao XY. Endothelial progenitor cells induce angiogenesis: A potential mechanism underlying neovascularization in encephaloduroarteriosynangiosis. Transl Stroke Res. 2021;12:357–65. https://doi.org/10.1007/s12975-020-00834-9 .
doi: 10.1007/s12975-020-00834-9 pubmed: 32632776
Qian C, Wei B, Ding J, Wu H, Cai X, Li B, Wang Y. Meta-analysis comparing the effects of rosuvastatin versus atorvastatin on regression of coronary atherosclerotic plaques. Am J Cardiol. 2015;116:1521–6. https://doi.org/10.1016/j.amjcard.2015.08.010 .
doi: 10.1016/j.amjcard.2015.08.010 pubmed: 26385518
Ahsan A, Han G, Pan J, Liu S, Padhiar AA, Chu P, Sun Z, Zhang Z, Sun B, Wu J, Irshad A, Lin Y, Peng J, Tang Z. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Apoptosis. 2015;20:1563–76. https://doi.org/10.1007/s10495-015-1175-4 .
doi: 10.1007/s10495-015-1175-4 pubmed: 26404526
Wang QN, Bao XY, Zou ZX, Wang XP, Zhang Q, Li DS, Zhao YQ, Duan L. The role of atorvastatin in collateral circulation formation induced by encephaloduroarteriosynangiosis: A prospective trial. Neurosurg Focus. 2021;51:E9. https://doi.org/10.3171/2021.6.FOCUS21112 .
doi: 10.3171/2021.6.FOCUS21112 pubmed: 34598150
Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol. 2003;23:1161–8. https://doi.org/10.1161/01.ATV.0000070546.16946.3A .
doi: 10.1161/01.ATV.0000070546.16946.3A pubmed: 12689915
Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biolog Chem. 2002;277:10661–8. https://doi.org/10.1074/jbc.M110354200 .
doi: 10.1074/jbc.M110354200
Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol. 2009;175:1768–76. https://doi.org/10.2353/ajpath.2009.090171 .
doi: 10.2353/ajpath.2009.090171 pubmed: 19729487 pmcid: 2751571
Bang OY, Chung JW, Kim SJ, et al. Caveolin-1, Ring fifinger protein 213, and endothelial function in Moyamoya disease. Int J Stroke. 2016;11:999–1008.
doi: 10.1177/1747493016662039 pubmed: 27462098
Zhao J, Yu Z, Zhang Y, Qiu C, Zhang G, Chen L, He S, Ma J. Caveolin-1 promoted collateral vessel formation in patients with Moyamoya disease. Front Neurol. 2022;13:796339. https://doi.org/10.3389/fneur.2022.796339 .
doi: 10.3389/fneur.2022.796339 pubmed: 35557625 pmcid: 9086974
Chaabane S, Messedi M, Akrout R, Ben Hamad M, Turki M, Marzouk S, Keskes L, Bahloul Z, Rebai A, Ayedi F, Maalej A. Association of hyperhomocysteinemia with genetic variants in key enzymes of homocysteine metabolism and methotrexate toxicity in rheumatoid arthritis patients. Inflamm Res. 2018;67:703–10. https://doi.org/10.1007/s00011-018-1161-8 .
doi: 10.1007/s00011-018-1161-8 pubmed: 29796841
Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. https://doi.org/10.1186/1475-2891-14-6 .
doi: 10.1186/1475-2891-14-6 pubmed: 25577237 pmcid: 4326479
Yuan H, Fu M, Yang X, Huang K, Ren X. Single nucleotide polymorphism of MTHFR rs1801133 associated with elevated Hcy levels affects susceptibility to cerebral small vessel disease. PeerJ. 2020;8:e8627. https://doi.org/10.7717/peerj.8627 .
doi: 10.7717/peerj.8627 pubmed: 32117640 pmcid: 7036271
He Q, Ge P, Ye X, Liu X, Wang J, Wang R, Zhang Y, Zhang D, Zhao J. Hyperhomocysteinemia is a predictor for poor postoperative angiogenesis in adult patients with Moyamoya disease. Front Neurol. 2022;13:902474. https://doi.org/10.3389/fneur.2022.902474 .
doi: 10.3389/fneur.2022.902474 pubmed: 35720075 pmcid: 9201052
Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: Focus on stroke. Endocr Metab Immune Disord. 2012;12:148–58. https://doi.org/10.2174/187153012800493477 .
doi: 10.2174/187153012800493477
Jeerakathil T, Johnson JA, Simpson SH, Majumdar SR. Short-term risk for stroke is doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: A population-based cohort study. Stroke. 2007;38:1739–43. https://doi.org/10.1161/STROKEAHA.106.481390 .
doi: 10.1161/STROKEAHA.106.481390 pubmed: 17478738
Abaci A, Oğuzhan A, Kahraman S, Eryol NK, Unal S, Arinç H, Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation. 1999;99:2239–42. https://doi.org/10.1161/01.cir.99.17.2239 .
doi: 10.1161/01.cir.99.17.2239 pubmed: 10226087
Lizotte F, Paré M, Denhez B, Leitges M, Guay A, Geraldes P. PKCd impaired vessel formation and angiogenic factor expression in diabetic ischemic limbs. Diabetes. 2013;62:2948–57. https://doi.org/10.2337/db12-1432 .
doi: 10.2337/db12-1432 pubmed: 23557702 pmcid: 3717846
Ren B, Zhang ZS, Liu WW, Bao XY, Li DS, Han C, Xian P, Zhao F, Wang H, Wang H, Duan L. Surgical outcomes following encephaloduroarteriosynangiosis in adult Moyamoya disease associated with type 2 diabetes. J Neurosurg. 2016;125:308–14. https://doi.org/10.3171/2015.7.JNS15218 .
doi: 10.3171/2015.7.JNS15218 pubmed: 26745491
Wang JC, Bennett M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59. https://doi.org/10.1161/CIRCRESAHA.111.261388 .
doi: 10.1161/CIRCRESAHA.111.261388 pubmed: 22773427
Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, Pofahl WE, Gavin TP. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs young woman. J Applied Physiol. 1985;2005(99):1872–9. https://doi.org/10.1152/japplphysiol.00498.2005 .
doi: 10.1152/japplphysiol.00498.2005
Liu ZW, Han C, Zhao F, Qiao PG, Wang H, Bao XY, Zhang ZS, Yang WZ, Li DS, Duan L. Collateral circulation in Moyamoya disease: A new grading system. Stroke. 2019;50:2708–15. https://doi.org/10.1161/STROKEAHA.119.024487 .
doi: 10.1161/STROKEAHA.119.024487 pubmed: 31409266
Bao XY, Wang QN, Wang XP, Yang RM, Zou ZX, Zhang Q, Li DS, Duan L. Recognition of the effect of indirect revascularization for Moyamoya disease: The balance between the stage progression and neoangiogenesis. Front Neurol. 2022;13:861187. https://doi.org/10.3389/fneur.2022.861187 .
doi: 10.3389/fneur.2022.861187 pubmed: 35599730 pmcid: 9121117

Auteurs

Gan Gao (G)

Chinese PLA Medical School, Beijing, China.
Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Si-Meng Liu (SM)

Chinese PLA Medical School, Beijing, China.
Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Fang-Bin Hao (FB)

Chinese PLA Medical School, Beijing, China.
Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Qian-Nan Wang (QN)

Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Xiao-Peng Wang (XP)

Chinese PLA Medical School, Beijing, China.
Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Min-Jie Wang (MJ)

Chinese PLA Medical School, Beijing, China.
Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Xiang-Yang Bao (XY)

Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Cong Han (C)

Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.

Lian Duan (L)

Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China. duanlian307@sina.com.

Classifications MeSH