Sequence dependencies and mutation rates of localized mutational processes in cancer.


Journal

Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844

Informations de publication

Date de publication:
17 08 2023
Historique:
received: 21 02 2023
accepted: 02 08 2023
medline: 21 8 2023
pubmed: 18 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.

Sections du résumé

BACKGROUND
Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes.
METHODS
We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs.
RESULTS
We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average.
CONCLUSIONS
We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.

Identifiants

pubmed: 37592287
doi: 10.1186/s13073-023-01217-z
pii: 10.1186/s13073-023-01217-z
pmc: PMC10436389
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

63

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Genome Biol. 2018 Sep 10;19(1):129
pubmed: 30201020
Nature. 2012 May 3;485(7396):95-8
pubmed: 22522932
Biochemistry. 1992 Apr 14;31(14):3671-81
pubmed: 1567822
Cell. 2016 Jan 28;164(3):538-49
pubmed: 26806129
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20411-20417
pubmed: 31548379
Nature. 1993 Apr 22;362(6422):709-15
pubmed: 8469282
Cell. 2015 Nov 19;163(5):1124-1137
pubmed: 26582132
PLoS Genet. 2020 Feb 3;16(2):e1008572
pubmed: 32012149
Nature. 2012 Aug 23;488(7412):504-7
pubmed: 22820252
Cell. 1996 Oct 18;87(2):159-70
pubmed: 8861899
Cell. 2018 Jun 14;173(7):1823
pubmed: 29906452
Nat Genet. 2013 May;45(5):478-86
pubmed: 23525077
Nat Genet. 2013 Sep;45(9):970-6
pubmed: 23852170
EMBO J. 2017 Oct 2;36(19):2829-2843
pubmed: 28814448
Trends Genet. 2021 Aug;37(8):717-729
pubmed: 33199048
Nature. 2016 Apr 14;532(7598):259-63
pubmed: 27075100
Nat Genet. 2016 Apr;48(4):349-55
pubmed: 26878723
Front Immunol. 2020 Apr 30;11:788
pubmed: 32425948
Mol Cell Biol. 1990 Dec;10(12):6348-55
pubmed: 2247059
Nat Rev Cancer. 2018 Nov;18(11):696-705
pubmed: 30293088
Nucleic Acids Res. 2020 Feb 20;48(3):1353-1371
pubmed: 31943071
J Radiat Res. 2011;52(2):115-25
pubmed: 21436607
PLoS Biol. 2009 Feb 3;7(2):e1000027
pubmed: 19192947
Genome Biol. 2021 May 3;22(1):133
pubmed: 33941236
NPJ Genom Med. 2018 Jan 11;3:1
pubmed: 29354286
Cell. 2012 May 25;149(5):979-93
pubmed: 22608084
Nat Commun. 2018 Sep 14;9(1):3753
pubmed: 30218074
Nat Commun. 2019 Jul 5;10(1):2969
pubmed: 31278357
Nature. 2010 Jan 14;463(7278):191-6
pubmed: 20016485
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21766-70
pubmed: 19995982
Cell Rep. 2013 Jan 31;3(1):246-59
pubmed: 23318258
Nat Commun. 2018 Jul 6;9(1):2626
pubmed: 29980679
Nucleic Acids Res. 2017 Jul 3;45(W1):W534-W538
pubmed: 28460012
Cell. 2017 Feb 9;168(4):644-656
pubmed: 28187286
Transl Cancer Res. 2013;2(3):107-129
pubmed: 24058901
Cell Rep. 2014 Jun 12;7(5):1649-1663
pubmed: 24835989
Science. 2016 Nov 4;354(6312):618-622
pubmed: 27811275
Cancer Cell. 2019 Sep 16;36(3):288-301.e14
pubmed: 31526759
Nat Methods. 2013 Dec;10(12):1211-2
pubmed: 24097270
Bioinformatics. 2020 Jul 1;36(Suppl_1):i309-i316
pubmed: 32657413
PLoS Genet. 2016 Aug 04;12(8):e1006207
pubmed: 27490693
Proc Natl Acad Sci U S A. 1961 Mar;47(3):403-15
pubmed: 16590840
Nature. 2020 Feb;578(7793):82-93
pubmed: 32025007
Oncogene. 2002 Dec 16;21(58):8957-66
pubmed: 12483512
Cell. 2017 Jul 27;170(3):534-547.e23
pubmed: 28753428
Nature. 2020 Jul;583(7818):699-710
pubmed: 32728249
Nucleic Acids Res. 2017 Nov 2;45(19):11213-11221
pubmed: 28977645
Nat Biotechnol. 2010 Aug;28(8):817-25
pubmed: 20657582
N Engl J Med. 2010 Apr 15;362(15):1417-29
pubmed: 20393178
Nat Rev Cancer. 2021 Oct;21(10):619-637
pubmed: 34316057
DNA Repair (Amst). 2018 Nov;71:12-22
pubmed: 30309820
Nature. 2020 Feb;578(7793):94-101
pubmed: 32025018
Nat Genet. 2012 May 29;44(6):619-22
pubmed: 22641210
Nature. 1982 Jul 8;298(5870):189-92
pubmed: 7045692
Cell. 2019 Mar 7;176(6):1282-1294.e20
pubmed: 30849372
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24196-24205
pubmed: 31723047
Nucleic Acids Res. 2014 Jun;42(11):7383-94
pubmed: 24829460
Nature. 2009 Apr 9;458(7239):719-24
pubmed: 19360079
Nature. 2019 Nov;575(7781):210-216
pubmed: 31645765
Nat Commun. 2019 Oct 8;10(1):4571
pubmed: 31594944
Cell. 2014 Dec 18;159(7):1524-37
pubmed: 25483777
Nat Genet. 2015 Sep;47(9):1067-72
pubmed: 26258849
Nature. 2013 Feb 21;494(7437):366-70
pubmed: 23389445
Mutat Res. 1970 Nov;10(5):521-3
pubmed: 4933489
Cell. 2000 Jan 7;100(1):57-70
pubmed: 10647931
Curr Opin Struct Biol. 2009 Feb;19(1):65-71
pubmed: 19208466
Nature. 2020 Feb;578(7793):102-111
pubmed: 32025015
Nat Genet. 2012 Sep;44(9):1006-14
pubmed: 22842228
Nat Genet. 2019 Dec;51(12):1732-1740
pubmed: 31740835
Cell. 2018 Nov 1;175(4):1074-1087.e18
pubmed: 30388444
Nature. 2013 Aug 22;500(7463):415-21
pubmed: 23945592
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20158-63
pubmed: 24277842
Nat Commun. 2021 Mar 11;12(1):1602
pubmed: 33707442
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18545-50
pubmed: 20876136
NPJ Genom Med. 2021 May 13;6(1):33
pubmed: 33986299
BMC Bioinformatics. 2018 Apr 19;19(1):147
pubmed: 29673314
Nucleic Acids Res. 2000 Nov 1;28(21):4083-9
pubmed: 11058103
PLoS Genet. 2018 Dec 26;14(12):e1007849
pubmed: 30586386
Science. 2004 Oct 22;306(5696):636-40
pubmed: 15499007
Nature. 2015 Feb 19;518(7539):360-364
pubmed: 25693567
Sci Rep. 2020 Jan 28;10(1):1286
pubmed: 31992766
PLoS Genet. 2017 May 10;13(5):e1006773
pubmed: 28489852
PLoS Comput Biol. 2019 Nov 25;15(11):e1007496
pubmed: 31765368
Nat Genet. 2015 Jul;47(7):818-21
pubmed: 26053496
Nat Commun. 2012;3:1004
pubmed: 22893128
Science. 2019 Jun 28;364(6447):
pubmed: 31249028

Auteurs

Gustav Alexander Poulsgaard (GA)

Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Simon Grund Sørensen (SG)

Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Randi Istrup Juul (RI)

Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Morten Muhlig Nielsen (MM)

Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Jakob Skou Pedersen (JS)

Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark. jakob.skou@clin.au.dk.
Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark. jakob.skou@clin.au.dk.
Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark. jakob.skou@clin.au.dk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH