Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae.

Betalains Betanin Betaxanthins Metabolic engineering Saccharomyces cerevisiae

Journal

Biotechnology for biofuels and bioproducts
ISSN: 2731-3654
Titre abrégé: Biotechnol Biofuels Bioprod
Pays: England
ID NLM: 9918300888906676

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 31 01 2023
accepted: 24 07 2023
medline: 18 8 2023
pubmed: 18 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Betalains, comprising red-violet betacyanins and yellow-orange betaxanthins, are the hydrophilic vacuolar pigments that provide bright coloration to roots, fruits, and flowers of plants of the Caryophyllales order. Betanin extracted from red beets is permitted quantum satis as a natural red food colorant (E162). Due to antioxidant activity, betanin has potential health benefits. We applied combinatorial engineering to find the optimal combination of a dozen tyrosine hydroxylase (TyH) and 4,5-dopa-estradiol-dioxygenase (DOD) variants. The best-engineered Saccharomyces cerevisiae strains produced over six-fold higher betaxanthins than previously reported. By genome-resequencing of these strains, we found out that two copies of DOD enzyme from Bougainvillea glabra together with TyH enzymes from Abronia nealleyi, Acleisanthes obtusa, and Cleretum bellidiforme were present in the three high-betaxanthin-producing isolates. Next, we expressed four variants of glucosyltransferases from Beta vulgaris for betanin biosynthesis. The highest titer of betanin (30.8 ± 0.14 mg/L after 48 h from 20 g/L glucose) was obtained when completing the biosynthesis pathway with UGT73A36 glucosyltransferase from Beta vulgaris. Finally, we investigated betalain transport in CEN.PK and S288C strains of Saccharomyces cerevisiae and identified a possible role of transporter genes QDR2 and APL1 in betanin transport. This study shows the potential of combinatorial engineering of yeast cell factories for the biotechnological production of betanin.

Sections du résumé

BACKGROUND BACKGROUND
Betalains, comprising red-violet betacyanins and yellow-orange betaxanthins, are the hydrophilic vacuolar pigments that provide bright coloration to roots, fruits, and flowers of plants of the Caryophyllales order. Betanin extracted from red beets is permitted quantum satis as a natural red food colorant (E162). Due to antioxidant activity, betanin has potential health benefits.
RESULTS RESULTS
We applied combinatorial engineering to find the optimal combination of a dozen tyrosine hydroxylase (TyH) and 4,5-dopa-estradiol-dioxygenase (DOD) variants. The best-engineered Saccharomyces cerevisiae strains produced over six-fold higher betaxanthins than previously reported. By genome-resequencing of these strains, we found out that two copies of DOD enzyme from Bougainvillea glabra together with TyH enzymes from Abronia nealleyi, Acleisanthes obtusa, and Cleretum bellidiforme were present in the three high-betaxanthin-producing isolates. Next, we expressed four variants of glucosyltransferases from Beta vulgaris for betanin biosynthesis. The highest titer of betanin (30.8 ± 0.14 mg/L after 48 h from 20 g/L glucose) was obtained when completing the biosynthesis pathway with UGT73A36 glucosyltransferase from Beta vulgaris. Finally, we investigated betalain transport in CEN.PK and S288C strains of Saccharomyces cerevisiae and identified a possible role of transporter genes QDR2 and APL1 in betanin transport.
CONCLUSIONS CONCLUSIONS
This study shows the potential of combinatorial engineering of yeast cell factories for the biotechnological production of betanin.

Identifiants

pubmed: 37592353
doi: 10.1186/s13068-023-02374-4
pii: 10.1186/s13068-023-02374-4
pmc: PMC10436450
doi:

Types de publication

Journal Article

Langues

eng

Pagination

128

Subventions

Organisme : European Union's Horizon 2020
ID : YEAST-TRANS project, Grant Agreement No. 757384
Organisme : Novo Nordisk Fonden
ID : NNF20CC0035580

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Coultate T, Blackburn RS. Food colorants: their past, present and future. Color Technol. 2018;134(3):165–86.
doi: 10.1111/cote.12334
Lehto S, Buchweitz M, Klimm A, Straßburger R, Bechtold C, Ulberth F. Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Addit Contam Part A. 2017;34(3):335–55.
doi: 10.1080/19440049.2016.1274431
McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007;370(9598):1560–7.
pubmed: 17825405 doi: 10.1016/S0140-6736(07)61306-3
Scotter MJ. Emerging and persistent issues with artificial food colours: natural colour additives as alternatives to synthetic colours in food and drink. Qual Assur Safety Crops Foods. 2011;3(1):28–39.
doi: 10.1111/j.1757-837X.2010.00087.x
Sustainable food colours. Food Science and Technology. 2020;34(4):50–3.
Lin GHY, Brusick DJ. Mutagenicity studies on FD&C Red No.3. Mutagenesis. 1986;1(4):253–9.
pubmed: 2457780 doi: 10.1093/mutage/1.4.253
Lin GH, Brusick DJ. Mutagenicity studies on two triphenylmethane dyes, bromophenol blue and tetrabromophenol blue. J Appl Toxicol. 1992;12(4):267–74.
pubmed: 1430777 doi: 10.1002/jat.2550120410
Vojdani A, Vojdani C. Immune reactivity to food coloring. Altern Ther Health Med. 2015;21(Suppl 1):52–62.
pubmed: 25599186
Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR. Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol. 2016;1(52):1–15.
Fernández-López JA, Almela L. Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. J Chromatogr A. 2001;913(1):415–20.
pubmed: 11355839 doi: 10.1016/S0021-9673(00)01224-3
Liliana C, Oana-Viorela N. Red Beetroot: Composition and Health Effects - A Review. J Nutri Med Diet Care [Internet]. 2020;5(2). https://www.clinmedjournals.org/articles/jnmdc/journal-of-nutritional-medicine-and-diet-care-jnmdc-6-043.php?jid=jnmdc . Accessed 10 May 2022.
Stintzing FC, Carle R. Betalains—emerging prospects for food scientists. Trends Food Sci Technol. 2007;18(10):514–25.
doi: 10.1016/j.tifs.2007.04.012
Gliszczyńska-Świgło A, Szymusiak H, Malinowska P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam. 2006;23(11):1079–87.
pubmed: 17071510 doi: 10.1080/02652030600986032
Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the amaranthaceae. J Agric Food Chem. 2003;51(8):2288–94.
pubmed: 12670172 doi: 10.1021/jf030045u
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: a review. Trends Food Sci Technol. 2022;1(122):66–82.
doi: 10.1016/j.tifs.2022.02.020
Zhang Q, Pan J, Wang Y, Lubet R, You M. Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis. Mol Carcinog. 2013;52(9):686–91.
pubmed: 22456940 doi: 10.1002/mc.21907
Thong-asa W, Jedsadavitayakol S, Jutarattananon S. Benefits of betanin in rotenone-induced Parkinson mice. Metab Brain Dis. 2021;36(8):2567–77.
pubmed: 34436745 doi: 10.1007/s11011-021-00826-0
Thong-asa W, Prasartsri S, Klomkleaw N, Thongwan N. The neuroprotective effect of betanin in trimethyltin-induced neurodegeneration in mice. Metab Brain Dis. 2020;35(8):1395–405.
pubmed: 32894390 doi: 10.1007/s11011-020-00615-1
Hobbs DA, Kaffa N, George TW, Methven L, Lovegrove JA. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br J Nutr. 2012;108(11):2066–74.
pubmed: 22414688 doi: 10.1017/S0007114512000190
Pietrzkowski Z, Argumedo R, Shu C, Nemzer B, Wybraniec S, Reyes-Izquierdo T. Betalain-rich red beet concentrate improves reduced knee discomfort and joint function: a double blind, placebo-controlled pilot clinical study [Internet]. Vol. 6, Nutrition and Dietary Supplements. Dove Press; 2014; p. 9–13. https://www.dovepress.com/betalain-rich-red-beet-concentrate-improves-reduced-knee-discomfort-an-peer-reviewed-fulltext-article-NDS . Accessed 5 Nov 2020.
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57:761–80.
pubmed: 16669781 doi: 10.1146/annurev.arplant.57.032905.105248
Stintzing F, Schliemann W. Pigments of fly agaric (Amanita muscaria). Z Naturforsch C. 2007;62(11–12):779–85.
pubmed: 18274277 doi: 10.1515/znc-2007-11-1201
von Ardenne R, Döpp H, Musso H, Steglich W. Über das Vorkommen von Muscaflavin bei Hygroeyben (Agaricales) und seine Dihydro- azepin-Struktur 1,2/Isolation of Muscaflavin from Hygrocybe Species (Agaricales) and its dihydroazepine structure. Z Naturforsch C. 1974;29(9–10):637–9.
doi: 10.1515/znc-1974-9-1032
Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. MBio. 2019. https://doi.org/10.1128/mBio.00345-19 .
doi: 10.1128/mBio.00345-19 pubmed: 30890610 pmcid: 6426604
Guerrero-Rubio MA, García-Carmona F, Gandía-Herrero F. First description of betalains biosynthesis in an aquatic organism: characterization of 4,5-DOPA-extradiol-dioxygenase activity in the cyanobacteria Anabaena cylindrica. Microb Biotechnol. 2020;13(6):1948–59.
pubmed: 32767544 pmcid: 7533325 doi: 10.1111/1751-7915.13641
Khan MI, Giridhar P. Plant betalains: chemistry and biochemistry. Phytochemistry. 2015;117:267–95.
pubmed: 26101148 doi: 10.1016/j.phytochem.2015.06.008
Polturak G, Aharoni A. “La Vie en Rose”: biosynthesis, sources, and applications of betalain pigments. Mol Plant. 2018;11(1):7–22.
pubmed: 29081360 doi: 10.1016/j.molp.2017.10.008
Sunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0149417 .
doi: 10.1371/journal.pone.0149417 pubmed: 26890886 pmcid: 4758722
Sivakumar V, Anna JL, Vijayeeswarri J, Swaminathan G. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem. 2009;16(6):782–9.
pubmed: 19410496 doi: 10.1016/j.ultsonch.2009.03.009
Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.
pubmed: 10850526 doi: 10.1080/10408690091189257
Garin TA, Vogel GJ. Process for concentrating and isolating a beet colorant [Internet]. US4409254A, 1983. https://patents.google.com/patent/US4409254A/nl . Accessed 23 Jan 2023.
Lu G, Edwards CG, Fellman JK, Mattinson DS, Navazio J. Biosynthetic origin of geosmin in red beets (Beta vulgaris L). J Agric Food Chem. 2003;51(4):1026–9.
pubmed: 12568567 doi: 10.1021/jf020905r
Acree TE, Lee CY, Butts RM, Barnard J. Geosmin, the earthy component of table beet odor. J Agric Food Chem. 1976;24(2):430–1.
doi: 10.1021/jf60204a059
Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021. https://doi.org/10.3390/molecules26092520 .
doi: 10.3390/molecules26092520 pubmed: 34065647 pmcid: 8156305
Hou Y, Liu X, Li S, Zhang X, Yu S, Zhao GR. Metabolic engineering of Escherichia coli for de novo production of betaxanthins. J Agric Food Chem. 2020;68(31):8370–80.
pubmed: 32627549 doi: 10.1021/acs.jafc.0c02949
Grewal PS, Modavi C, Russ ZN, Harris NC, Dueber JE. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng. 2018;45:180–8.
pubmed: 29247865 doi: 10.1016/j.ymben.2017.12.008
DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol. 2015;11(7):465–71.
pubmed: 25984720 doi: 10.1038/nchembio.1816
Zhang L, Liu X, Li J, Meng Y, Zhao GR. Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering. Synth Syst Biotechnol. 2023;8(1):54–60.
pubmed: 36438069 doi: 10.1016/j.synbio.2022.11.002
Santos CNS, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng. 2011;13(4):392–400.
pubmed: 21320631 doi: 10.1016/j.ymben.2011.02.002
de Oliveira AR, Valente GT. Predicting metabolic pathways of plant enzymes without using sequence similarity: models from machine learning. The Plant Genome. 2020;13(3): e20043.
doi: 10.1002/tpg2.20043
Gandía-Herrero F, García-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci. 2013;18(6):334–43.
pubmed: 23395307 doi: 10.1016/j.tplants.2013.01.003
Kildegaard KR, Tramontin LRR, Chekina K, Li M, Goedecke TJ, Kristensen M, et al. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae. Yeast. 2019;36(5):237–47.
pubmed: 30953378 doi: 10.1002/yea.3390
Herbach KM, Stintzing FC, Carle R. Betalain stability and degradation—structural and chromatic aspects. J Food Sci. 2006;71(4):R41-50.
doi: 10.1111/j.1750-3841.2006.00022.x
Hansen EH, Houghton-Larsen J. Recombinant host cells with improved production of L-DOPA, dopamine, (S)-Norcoclaurine or derivatives thereof [Internet]. AU2020205462A1, 2021. https://patents.google.com/patent/AU2020205462A1/en . Accessed 6 Jul 2022.
Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2014;505(7484):546–9.
pubmed: 24352233 doi: 10.1038/nature12817
Mower JP, Palmer JD. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics. 2006;276(3):285–93.
pubmed: 16862402 doi: 10.1007/s00438-006-0139-3
Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 2000;28(13):2571–6.
pubmed: 10871408 pmcid: 102699 doi: 10.1093/nar/28.13.2571
van der Hoek SA, Borodina I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr Opin Biotechnol. 2020;1(66):186–94.
doi: 10.1016/j.copbio.2020.08.002
Wang G, Møller-Hansen I, Babaei M, D’Ambrosio V, Christensen HB, Darbani B, et al. Transportome-wide engineering of Saccharomyces cerevisiae. Metab Eng. 2021;1(64):52–63.
doi: 10.1016/j.ymben.2021.01.007
Sasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, Ozeki Y. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant Cell Physiol. 2009;50(5):1012–6.
pubmed: 19366710 doi: 10.1093/pcp/pcp053
Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015;207(4):1170–80.
pubmed: 25966996 pmcid: 4557044 doi: 10.1111/nph.13441
MacPherson M, Saka Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth Biol. 2017;6(1):130–8.
pubmed: 27529501 doi: 10.1021/acssynbio.6b00165
Feng X, Marchisio MA. Novel S. cerevisiae hybrid synthetic promoters based on foreign core promoter sequences. Int J Mol Sci. 2021;22(11):5704.
pubmed: 34071849 pmcid: 8198421 doi: 10.3390/ijms22115704
Wang Z, Wei L, Sheng Y, Zhang G. Yeast synthetic terminators: fine regulation of strength through linker sequences. ChemBioChem. 2019;20(18):2383–9.
pubmed: 30974044 doi: 10.1002/cbic.201900163
von Elbe JH, Attoe EL. Oxygen involvement in betanine degradation—measurement of active oxygen species and oxidation reduction potentials. Food Chem. 1985;16(1):49–67.
doi: 10.1016/0308-8146(85)90019-6
Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T. Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry. 2006;67(15):1598–612.
pubmed: 16876834 doi: 10.1016/j.phytochem.2006.06.026
Savitskaya J, Protzko RJ, Li FZ, Arkin AP, Dueber JE. Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Sci Rep. 2019;9(1):1–10.
doi: 10.1038/s41598-019-41759-0
Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J. 2016. https://doi.org/10.1002/biot.201600147 .
doi: 10.1002/biot.201600147 pubmed: 27166612 pmcid: 5094547
Christinet L, Burdet FX, Zaiko M, Hinz U, Zrÿd JP. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol. 2004;134(1):265–74.
pubmed: 14730069 pmcid: 316306 doi: 10.1104/pp.103.031914
Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics. 2003;4(1):29.
pubmed: 12854978 pmcid: 166169 doi: 10.1186/1471-2105-4-29
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, et al. Cytochromes P450. Arabidopsis Book [Internet]. 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268508/ . Accessed 29 May 2020.
Milne N, Thomsen P, Mølgaard Knudsen N, Rubaszka P, Kristensen M, Borodina I. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab Eng. 2020;1(60):25–36.
doi: 10.1016/j.ymben.2019.12.007
Verduyn C, Postma E, Scheffers WA, Dijken JPV. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501–17.
pubmed: 1523884 doi: 10.1002/yea.320080703
Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng. 2018;1(48):288–96.
doi: 10.1016/j.ymben.2018.07.001
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Salazar AN, Gorter de Vries AR, van den Broek M, Wijsman M, de la Torre Cortés P, Brickwedde A, et al. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113–7D. FEMS Yeast Res. 2017. https://doi.org/10.1093/femsyr/fox074
Denis E, Denis E, Sanchez S, Mairey B, Beluche O, Cruaud C, et al. Extracting high molecular weight genomic DNA from Saccharomyces cerevisiae. Protocol Exchange [Internet]. 2018. https://www.nature.com/protocolexchange/protocols/6877 . Accessed 2 Jun 2023.
Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37(23):4572–4.
pubmed: 34623391 pmcid: 8652018 doi: 10.1093/bioinformatics/btab705
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2):giab008.
pubmed: 33590861 pmcid: 7931819 doi: 10.1093/gigascience/giab008
Łata E, Fulczyk A, Kowalska T, Sajewicz M. Development of a novel thin-layer chromatographic method of screening the red beet (Beta vulgaris L.) pigments in alimentary products. J Chromatogr Sci. 2020;58(1):5–15.
doi: 10.1093/chromsci/bmz099
Gonçalves LCP, de Trassi MAS, Lopes NB, Dörr FA, dos Santos MT, Baader WJ, et al. A comparative study of the purification of betanin. Food Chem. 2012;131(1):231–8.
doi: 10.1016/j.foodchem.2011.08.067
Kildegaard KR, Arnesen JA, Adiego-Pérez B, Rago D, Kristensen M, Klitgaard AK, et al. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab Eng. 2021;1(66):1–11.
doi: 10.1016/j.ymben.2021.03.010

Auteurs

Mahsa Babaei (M)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Philip Tinggaard Thomsen (PT)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Jane Dannow Dyekjær (JD)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Christiane Ursula Glitz (CU)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Marc Cernuda Pastor (MC)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Peter Gockel (P)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Johann Dietmar Körner (JD)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Daniela Rago (D)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.

Irina Borodina (I)

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark. irbo@biosustain.dtu.dk.

Classifications MeSH