Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae.
Betalains
Betanin
Betaxanthins
Metabolic engineering
Saccharomyces cerevisiae
Journal
Biotechnology for biofuels and bioproducts
ISSN: 2731-3654
Titre abrégé: Biotechnol Biofuels Bioprod
Pays: England
ID NLM: 9918300888906676
Informations de publication
Date de publication:
17 Aug 2023
17 Aug 2023
Historique:
received:
31
01
2023
accepted:
24
07
2023
medline:
18
8
2023
pubmed:
18
8
2023
entrez:
17
8
2023
Statut:
epublish
Résumé
Betalains, comprising red-violet betacyanins and yellow-orange betaxanthins, are the hydrophilic vacuolar pigments that provide bright coloration to roots, fruits, and flowers of plants of the Caryophyllales order. Betanin extracted from red beets is permitted quantum satis as a natural red food colorant (E162). Due to antioxidant activity, betanin has potential health benefits. We applied combinatorial engineering to find the optimal combination of a dozen tyrosine hydroxylase (TyH) and 4,5-dopa-estradiol-dioxygenase (DOD) variants. The best-engineered Saccharomyces cerevisiae strains produced over six-fold higher betaxanthins than previously reported. By genome-resequencing of these strains, we found out that two copies of DOD enzyme from Bougainvillea glabra together with TyH enzymes from Abronia nealleyi, Acleisanthes obtusa, and Cleretum bellidiforme were present in the three high-betaxanthin-producing isolates. Next, we expressed four variants of glucosyltransferases from Beta vulgaris for betanin biosynthesis. The highest titer of betanin (30.8 ± 0.14 mg/L after 48 h from 20 g/L glucose) was obtained when completing the biosynthesis pathway with UGT73A36 glucosyltransferase from Beta vulgaris. Finally, we investigated betalain transport in CEN.PK and S288C strains of Saccharomyces cerevisiae and identified a possible role of transporter genes QDR2 and APL1 in betanin transport. This study shows the potential of combinatorial engineering of yeast cell factories for the biotechnological production of betanin.
Sections du résumé
BACKGROUND
BACKGROUND
Betalains, comprising red-violet betacyanins and yellow-orange betaxanthins, are the hydrophilic vacuolar pigments that provide bright coloration to roots, fruits, and flowers of plants of the Caryophyllales order. Betanin extracted from red beets is permitted quantum satis as a natural red food colorant (E162). Due to antioxidant activity, betanin has potential health benefits.
RESULTS
RESULTS
We applied combinatorial engineering to find the optimal combination of a dozen tyrosine hydroxylase (TyH) and 4,5-dopa-estradiol-dioxygenase (DOD) variants. The best-engineered Saccharomyces cerevisiae strains produced over six-fold higher betaxanthins than previously reported. By genome-resequencing of these strains, we found out that two copies of DOD enzyme from Bougainvillea glabra together with TyH enzymes from Abronia nealleyi, Acleisanthes obtusa, and Cleretum bellidiforme were present in the three high-betaxanthin-producing isolates. Next, we expressed four variants of glucosyltransferases from Beta vulgaris for betanin biosynthesis. The highest titer of betanin (30.8 ± 0.14 mg/L after 48 h from 20 g/L glucose) was obtained when completing the biosynthesis pathway with UGT73A36 glucosyltransferase from Beta vulgaris. Finally, we investigated betalain transport in CEN.PK and S288C strains of Saccharomyces cerevisiae and identified a possible role of transporter genes QDR2 and APL1 in betanin transport.
CONCLUSIONS
CONCLUSIONS
This study shows the potential of combinatorial engineering of yeast cell factories for the biotechnological production of betanin.
Identifiants
pubmed: 37592353
doi: 10.1186/s13068-023-02374-4
pii: 10.1186/s13068-023-02374-4
pmc: PMC10436450
doi:
Types de publication
Journal Article
Langues
eng
Pagination
128Subventions
Organisme : European Union's Horizon 2020
ID : YEAST-TRANS project, Grant Agreement No. 757384
Organisme : Novo Nordisk Fonden
ID : NNF20CC0035580
Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Coultate T, Blackburn RS. Food colorants: their past, present and future. Color Technol. 2018;134(3):165–86.
doi: 10.1111/cote.12334
Lehto S, Buchweitz M, Klimm A, Straßburger R, Bechtold C, Ulberth F. Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Addit Contam Part A. 2017;34(3):335–55.
doi: 10.1080/19440049.2016.1274431
McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007;370(9598):1560–7.
pubmed: 17825405
doi: 10.1016/S0140-6736(07)61306-3
Scotter MJ. Emerging and persistent issues with artificial food colours: natural colour additives as alternatives to synthetic colours in food and drink. Qual Assur Safety Crops Foods. 2011;3(1):28–39.
doi: 10.1111/j.1757-837X.2010.00087.x
Sustainable food colours. Food Science and Technology. 2020;34(4):50–3.
Lin GHY, Brusick DJ. Mutagenicity studies on FD&C Red No.3. Mutagenesis. 1986;1(4):253–9.
pubmed: 2457780
doi: 10.1093/mutage/1.4.253
Lin GH, Brusick DJ. Mutagenicity studies on two triphenylmethane dyes, bromophenol blue and tetrabromophenol blue. J Appl Toxicol. 1992;12(4):267–74.
pubmed: 1430777
doi: 10.1002/jat.2550120410
Vojdani A, Vojdani C. Immune reactivity to food coloring. Altern Ther Health Med. 2015;21(Suppl 1):52–62.
pubmed: 25599186
Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR. Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol. 2016;1(52):1–15.
Fernández-López JA, Almela L. Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. J Chromatogr A. 2001;913(1):415–20.
pubmed: 11355839
doi: 10.1016/S0021-9673(00)01224-3
Liliana C, Oana-Viorela N. Red Beetroot: Composition and Health Effects - A Review. J Nutri Med Diet Care [Internet]. 2020;5(2). https://www.clinmedjournals.org/articles/jnmdc/journal-of-nutritional-medicine-and-diet-care-jnmdc-6-043.php?jid=jnmdc . Accessed 10 May 2022.
Stintzing FC, Carle R. Betalains—emerging prospects for food scientists. Trends Food Sci Technol. 2007;18(10):514–25.
doi: 10.1016/j.tifs.2007.04.012
Gliszczyńska-Świgło A, Szymusiak H, Malinowska P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam. 2006;23(11):1079–87.
pubmed: 17071510
doi: 10.1080/02652030600986032
Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the amaranthaceae. J Agric Food Chem. 2003;51(8):2288–94.
pubmed: 12670172
doi: 10.1021/jf030045u
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: a review. Trends Food Sci Technol. 2022;1(122):66–82.
doi: 10.1016/j.tifs.2022.02.020
Zhang Q, Pan J, Wang Y, Lubet R, You M. Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis. Mol Carcinog. 2013;52(9):686–91.
pubmed: 22456940
doi: 10.1002/mc.21907
Thong-asa W, Jedsadavitayakol S, Jutarattananon S. Benefits of betanin in rotenone-induced Parkinson mice. Metab Brain Dis. 2021;36(8):2567–77.
pubmed: 34436745
doi: 10.1007/s11011-021-00826-0
Thong-asa W, Prasartsri S, Klomkleaw N, Thongwan N. The neuroprotective effect of betanin in trimethyltin-induced neurodegeneration in mice. Metab Brain Dis. 2020;35(8):1395–405.
pubmed: 32894390
doi: 10.1007/s11011-020-00615-1
Hobbs DA, Kaffa N, George TW, Methven L, Lovegrove JA. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br J Nutr. 2012;108(11):2066–74.
pubmed: 22414688
doi: 10.1017/S0007114512000190
Pietrzkowski Z, Argumedo R, Shu C, Nemzer B, Wybraniec S, Reyes-Izquierdo T. Betalain-rich red beet concentrate improves reduced knee discomfort and joint function: a double blind, placebo-controlled pilot clinical study [Internet]. Vol. 6, Nutrition and Dietary Supplements. Dove Press; 2014; p. 9–13. https://www.dovepress.com/betalain-rich-red-beet-concentrate-improves-reduced-knee-discomfort-an-peer-reviewed-fulltext-article-NDS . Accessed 5 Nov 2020.
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57:761–80.
pubmed: 16669781
doi: 10.1146/annurev.arplant.57.032905.105248
Stintzing F, Schliemann W. Pigments of fly agaric (Amanita muscaria). Z Naturforsch C. 2007;62(11–12):779–85.
pubmed: 18274277
doi: 10.1515/znc-2007-11-1201
von Ardenne R, Döpp H, Musso H, Steglich W. Über das Vorkommen von Muscaflavin bei Hygroeyben (Agaricales) und seine Dihydro- azepin-Struktur 1,2/Isolation of Muscaflavin from Hygrocybe Species (Agaricales) and its dihydroazepine structure. Z Naturforsch C. 1974;29(9–10):637–9.
doi: 10.1515/znc-1974-9-1032
Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. MBio. 2019. https://doi.org/10.1128/mBio.00345-19 .
doi: 10.1128/mBio.00345-19
pubmed: 30890610
pmcid: 6426604
Guerrero-Rubio MA, García-Carmona F, Gandía-Herrero F. First description of betalains biosynthesis in an aquatic organism: characterization of 4,5-DOPA-extradiol-dioxygenase activity in the cyanobacteria Anabaena cylindrica. Microb Biotechnol. 2020;13(6):1948–59.
pubmed: 32767544
pmcid: 7533325
doi: 10.1111/1751-7915.13641
Khan MI, Giridhar P. Plant betalains: chemistry and biochemistry. Phytochemistry. 2015;117:267–95.
pubmed: 26101148
doi: 10.1016/j.phytochem.2015.06.008
Polturak G, Aharoni A. “La Vie en Rose”: biosynthesis, sources, and applications of betalain pigments. Mol Plant. 2018;11(1):7–22.
pubmed: 29081360
doi: 10.1016/j.molp.2017.10.008
Sunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0149417 .
doi: 10.1371/journal.pone.0149417
pubmed: 26890886
pmcid: 4758722
Sivakumar V, Anna JL, Vijayeeswarri J, Swaminathan G. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem. 2009;16(6):782–9.
pubmed: 19410496
doi: 10.1016/j.ultsonch.2009.03.009
Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.
pubmed: 10850526
doi: 10.1080/10408690091189257
Garin TA, Vogel GJ. Process for concentrating and isolating a beet colorant [Internet]. US4409254A, 1983. https://patents.google.com/patent/US4409254A/nl . Accessed 23 Jan 2023.
Lu G, Edwards CG, Fellman JK, Mattinson DS, Navazio J. Biosynthetic origin of geosmin in red beets (Beta vulgaris L). J Agric Food Chem. 2003;51(4):1026–9.
pubmed: 12568567
doi: 10.1021/jf020905r
Acree TE, Lee CY, Butts RM, Barnard J. Geosmin, the earthy component of table beet odor. J Agric Food Chem. 1976;24(2):430–1.
doi: 10.1021/jf60204a059
Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021. https://doi.org/10.3390/molecules26092520 .
doi: 10.3390/molecules26092520
pubmed: 34065647
pmcid: 8156305
Hou Y, Liu X, Li S, Zhang X, Yu S, Zhao GR. Metabolic engineering of Escherichia coli for de novo production of betaxanthins. J Agric Food Chem. 2020;68(31):8370–80.
pubmed: 32627549
doi: 10.1021/acs.jafc.0c02949
Grewal PS, Modavi C, Russ ZN, Harris NC, Dueber JE. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng. 2018;45:180–8.
pubmed: 29247865
doi: 10.1016/j.ymben.2017.12.008
DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol. 2015;11(7):465–71.
pubmed: 25984720
doi: 10.1038/nchembio.1816
Zhang L, Liu X, Li J, Meng Y, Zhao GR. Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering. Synth Syst Biotechnol. 2023;8(1):54–60.
pubmed: 36438069
doi: 10.1016/j.synbio.2022.11.002
Santos CNS, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng. 2011;13(4):392–400.
pubmed: 21320631
doi: 10.1016/j.ymben.2011.02.002
de Oliveira AR, Valente GT. Predicting metabolic pathways of plant enzymes without using sequence similarity: models from machine learning. The Plant Genome. 2020;13(3): e20043.
doi: 10.1002/tpg2.20043
Gandía-Herrero F, García-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci. 2013;18(6):334–43.
pubmed: 23395307
doi: 10.1016/j.tplants.2013.01.003
Kildegaard KR, Tramontin LRR, Chekina K, Li M, Goedecke TJ, Kristensen M, et al. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae. Yeast. 2019;36(5):237–47.
pubmed: 30953378
doi: 10.1002/yea.3390
Herbach KM, Stintzing FC, Carle R. Betalain stability and degradation—structural and chromatic aspects. J Food Sci. 2006;71(4):R41-50.
doi: 10.1111/j.1750-3841.2006.00022.x
Hansen EH, Houghton-Larsen J. Recombinant host cells with improved production of L-DOPA, dopamine, (S)-Norcoclaurine or derivatives thereof [Internet]. AU2020205462A1, 2021. https://patents.google.com/patent/AU2020205462A1/en . Accessed 6 Jul 2022.
Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2014;505(7484):546–9.
pubmed: 24352233
doi: 10.1038/nature12817
Mower JP, Palmer JD. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics. 2006;276(3):285–93.
pubmed: 16862402
doi: 10.1007/s00438-006-0139-3
Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 2000;28(13):2571–6.
pubmed: 10871408
pmcid: 102699
doi: 10.1093/nar/28.13.2571
van der Hoek SA, Borodina I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr Opin Biotechnol. 2020;1(66):186–94.
doi: 10.1016/j.copbio.2020.08.002
Wang G, Møller-Hansen I, Babaei M, D’Ambrosio V, Christensen HB, Darbani B, et al. Transportome-wide engineering of Saccharomyces cerevisiae. Metab Eng. 2021;1(64):52–63.
doi: 10.1016/j.ymben.2021.01.007
Sasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, Ozeki Y. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant Cell Physiol. 2009;50(5):1012–6.
pubmed: 19366710
doi: 10.1093/pcp/pcp053
Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015;207(4):1170–80.
pubmed: 25966996
pmcid: 4557044
doi: 10.1111/nph.13441
MacPherson M, Saka Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth Biol. 2017;6(1):130–8.
pubmed: 27529501
doi: 10.1021/acssynbio.6b00165
Feng X, Marchisio MA. Novel S. cerevisiae hybrid synthetic promoters based on foreign core promoter sequences. Int J Mol Sci. 2021;22(11):5704.
pubmed: 34071849
pmcid: 8198421
doi: 10.3390/ijms22115704
Wang Z, Wei L, Sheng Y, Zhang G. Yeast synthetic terminators: fine regulation of strength through linker sequences. ChemBioChem. 2019;20(18):2383–9.
pubmed: 30974044
doi: 10.1002/cbic.201900163
von Elbe JH, Attoe EL. Oxygen involvement in betanine degradation—measurement of active oxygen species and oxidation reduction potentials. Food Chem. 1985;16(1):49–67.
doi: 10.1016/0308-8146(85)90019-6
Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T. Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry. 2006;67(15):1598–612.
pubmed: 16876834
doi: 10.1016/j.phytochem.2006.06.026
Savitskaya J, Protzko RJ, Li FZ, Arkin AP, Dueber JE. Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Sci Rep. 2019;9(1):1–10.
doi: 10.1038/s41598-019-41759-0
Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J. 2016. https://doi.org/10.1002/biot.201600147 .
doi: 10.1002/biot.201600147
pubmed: 27166612
pmcid: 5094547
Christinet L, Burdet FX, Zaiko M, Hinz U, Zrÿd JP. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol. 2004;134(1):265–74.
pubmed: 14730069
pmcid: 316306
doi: 10.1104/pp.103.031914
Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics. 2003;4(1):29.
pubmed: 12854978
pmcid: 166169
doi: 10.1186/1471-2105-4-29
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, et al. Cytochromes P450. Arabidopsis Book [Internet]. 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268508/ . Accessed 29 May 2020.
Milne N, Thomsen P, Mølgaard Knudsen N, Rubaszka P, Kristensen M, Borodina I. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab Eng. 2020;1(60):25–36.
doi: 10.1016/j.ymben.2019.12.007
Verduyn C, Postma E, Scheffers WA, Dijken JPV. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501–17.
pubmed: 1523884
doi: 10.1002/yea.320080703
Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng. 2018;1(48):288–96.
doi: 10.1016/j.ymben.2018.07.001
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Salazar AN, Gorter de Vries AR, van den Broek M, Wijsman M, de la Torre Cortés P, Brickwedde A, et al. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113–7D. FEMS Yeast Res. 2017. https://doi.org/10.1093/femsyr/fox074
Denis E, Denis E, Sanchez S, Mairey B, Beluche O, Cruaud C, et al. Extracting high molecular weight genomic DNA from Saccharomyces cerevisiae. Protocol Exchange [Internet]. 2018. https://www.nature.com/protocolexchange/protocols/6877 . Accessed 2 Jun 2023.
Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37(23):4572–4.
pubmed: 34623391
pmcid: 8652018
doi: 10.1093/bioinformatics/btab705
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2):giab008.
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Łata E, Fulczyk A, Kowalska T, Sajewicz M. Development of a novel thin-layer chromatographic method of screening the red beet (Beta vulgaris L.) pigments in alimentary products. J Chromatogr Sci. 2020;58(1):5–15.
doi: 10.1093/chromsci/bmz099
Gonçalves LCP, de Trassi MAS, Lopes NB, Dörr FA, dos Santos MT, Baader WJ, et al. A comparative study of the purification of betanin. Food Chem. 2012;131(1):231–8.
doi: 10.1016/j.foodchem.2011.08.067
Kildegaard KR, Arnesen JA, Adiego-Pérez B, Rago D, Kristensen M, Klitgaard AK, et al. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab Eng. 2021;1(66):1–11.
doi: 10.1016/j.ymben.2021.03.010