In vitro modelling of the influence of alternative feeds (Hermetia illucens, Arthrospira platensis) on the resistance of different rainbow trout populations (Oncorhynchus mykiss) against the viral haemorrhagic septicaemia virus and Yersinia ruckeri.
Arthrospira platensis
Hermetia illucens
Yersinia ruckeri
disease resistance
in vitro
viral haemorrhagic septicaemia virus
Journal
Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
revised:
24
07
2023
received:
13
06
2023
accepted:
28
07
2023
pubmed:
18
8
2023
medline:
18
8
2023
entrez:
18
8
2023
Statut:
ppublish
Résumé
Replacing fishmeal, a finite resource with high market demand, in the diet of carnivorous rainbow trout with proteins from alternative sources may be a challenge for these fish. Therefore, this study investigated whether replacing fishmeal with protein derived from Hermetia illucens or Arthrospira platensis could promote disease susceptibility in local trout populations with different growth performance. This was assessed in vitro by measuring susceptibility to infection with the viral haemorrhagic septicaemia virus (VHSV) or the bacterium Yersinia ruckeri. Analysis of fin tissue explants and primary cell cultures from scales from the three trout populations infected in vitro with VHSV and gill explants infected with Y. ruckeri showed no significant differences in virus replication or bacterial counts. Evaluation of the virucidal or bactericidal effect of skin mucus showed a significant reduction in viral load and bacterial count for all samples with mucus addition, but no significant difference was observed between the experimental groups. This study documents no apparent impairment of innate immune mechanisms in the skin and gills of trout after feeding a diet replacing fishmeal with Arthrospira or Hermetia proteins. This underlines the potential of these alternative protein sources for the further development of sustainable trout aquaculture.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1269-1283Subventions
Organisme : Niedersächsisches Ministerium für Wissenschaft und Kultur
Organisme : Ministry for Science and Culture in Lower Saxony
Informations de copyright
© 2023 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.
Références
Baeverfjord, G., & Krogdahl, A. (1996). Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: A comparison with the intestines of fasted fish. Journal of Fish Diseases, 19(5), 375-387. https://doi.org/10.1046/j.1365-2761.1996.d01-92.x
Bakke-McKellep, A. M., Press, C. M., Baeverfjord, G., Krogdahl, Å., & Landsverk, T. (2000). Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced enteritis. Journal of Fish Diseases, 23(2), 115-127. https://doi.org/10.1046/j.1365-2761.2000.00218.x
Barnes, A. (2011). Enteric Redmouth Disease (ERM) (Yersinia ruckeri). In P. T. K. Woo & D. W. Bruno (Eds.), Fish diseases and disorders: Viral, bacterial and fungal infections (pp. 484-511). CABI Publishing.
Bearzotti, M., Delmas, B., Lamoureux, A., Loustau, A. M., Chilmonczyk, S., & Bremont, M. (1999). Fish rhabdovirus cell entry is mediated by fibronectin. Journal of Virology, 73(9), 7703-7709. https://doi.org/10.1128/jvi.73.9.7703-7709.1999
Brudeseth, B. E., Castric, J., & Evensen, Ø. (2002). Studies on pathogenesis following single and double infection with viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss). Veterinary Pathology, 39(2), 180-189. https://doi.org/10.1354/vp.39-2-180
Burrells, C., Williams, P. D., Southgate, P. J., & Crampton, V. O. (1999). Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veterinary Immunology and Immunopathology, 72(3), 277-288. https://doi.org/10.1016/S0165-2427(99)00143-9
Cabillon, N. A. R., & Lazado, C. C. (2019). Mucosal barrier functions of fish under changing environmental conditions. Fishes, 4(1), 2. https://doi.org/10.3390/fishes4010002
Dietrich, M. A., Nynca, J., Adamek, M., Steinhagen, D., Karol, H., & Ciereszko, A. (2015). Expression of apolipoprotein A-I and A-II in rainbow trout reproductive tract and their possible role in antibacterial defence. Fish & Shellfish Immunology, 45(2), 750-756. https://doi.org/10.1016/j.fsi.2015.05.048
Dietz, Sünder, A., & Liebert, F. (2020). “Does genetic background of rainbow trout impact on growth and feed utilization following fshmeal substitution by partly defatted insect meal (Hermetia illucens) or microalgae powder (Arthrospira platensis)?”. Proceedings of the Society of Nutrition Physi-ologyvol. 29, (p. 38). DLG-Verlag GmbH.
Dietz, C., Wessels, S., Sünder, A., Sharifi, R., Gährken, J., & Liebert, F. (2023). Does Genetic Background of Rainbow Trout Impact Growth and Feed Utilisation following Fishmeal Substitution by Partly Defatted Insect Meal (Hermetia illucens) or Microalgae Powder (Arthrospira platensis)? Aquaculture Research, 2023, 4774048.
Dorson, M., Torhy, C., & de Kinkelin, P. (1994). Viral haemorrhagic septicaemia virus multiplication and interferon production in rainbow trout and in rainbow trout × brook trout hybrids. Fish & Shellfish Immunology, 4(5), 369-381. https://doi.org/10.1006/fsim.1994.1032
Ekman, D. R., Skelton, D. M., Davis, J. M., Villeneuve, D. L., Cavallin, J. E., Schroeder, A., Jensen, K. M., Ankley, G. T., & Collette, T. W. (2015). Metabolite profiling of fish skin mucus: A novel approach for minimally-invasive environmental exposure monitoring and surveillance. Environmental Science & Technology, 49(5), 3091-3100. https://doi.org/10.1021/es505054f
Estepa, A., Frias, D., & Coll, J. (1993). In vitro susceptibility of rainbow trout fin cells to viral haemorrhagic septicaemia virus. Diseases of Aquatic Organisms, 15, 35-39. https://doi.org/10.3354/dao015035
Enzmann, P. J., & Bruchhof, B. (1989). Comparative studies on viral haemorrhagic septicaemia viruses and infectious hematopoietic necrosis virus. An attempt to demonstrate an immunological relationship. In K. Lillelund & H. Rosenthal (Eds.), Fish health protection stategies (pp. 107-120). Bundesministerium fiir Forschung und Technologie, Bonn.
Ghosh, K., Ray, A. K., & Ringø, E. (2019). Applications of plant ingredients for tropical and subtropical freshwater finfish: Possibilities and challenges. Reviews in Aquaculture, 11(3), 793-815. https://doi.org/10.1111/raq.12258
Gjedrem, T. (2012). Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture, 344-349, 12-22. https://doi.org/10.1016/j.aquaculture.2012.03.003
Harmache, A., LeBerre, M., Droineau, S., Giovannini, M., & Brémont, M. (2006). Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. Journal of Virology, 80(7), 3655-3659. https://doi.org/10.1128/JVI.80.7.3655-3659.2006
Hedrera, M. I., Galdames, J. A., Jimenez-Reyes, M. F., Reyes, A. E., Avendaño-Herrera, R., Romero, J., & Feijóo, C. G. (2013). Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One, 8(7), e69983. https://doi.org/10.1371/journal.pone.0069983
Hemre, G. I., Amlund, H., Aursand, M., Bakke, A. M., Olsen, R., Ringoe, E., … Torrissen, O. (2018). Criteria for safe use of plant ingredients in diets for aquacultured fish. European Journal of Nutrition & Food Safety, 8, 240-242. https://doi.org/10.9734/EJNFS/2018/43861
Huang, Y., Runge, M., Michael, G. B., Schwarz, S., Jung, A., & Steinhagen, D. (2013). Biochemical and molecular heterogeneity among isolates of Yersinia ruckeri from rainbow trout (Oncorhynchus mykiss, Walbaum) in north west Germany. BMC veterinary research, 9, 215.
Irungu, F. G., Mutungi, C. M., Faraj, A. K., Affognon, H., Tanga, C., Ekesi, S., Nakimbugwe, D., & Fiaboe, K. K. M. (2018). Minerals content of extruded fish feeds containing cricket (Acheta domesticus) and black soldier fly larvae (Hermetia illucens) fractions. International Aquatic Research, 10(2), 101-113. https://doi.org/10.1007/s40071-018-0191-8
Ju, Z. Y., Deng, D.-F., & Dominy, W. (2012). A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture, 354-355, 50-55. https://doi.org/10.1016/j.aquaculture.2012.04.028
Khimmakthong, U., Deshmukh, S., Chettri, J. K., Bojesen, A. M., Kania, P. W., Dalsgaard, I., & Buchmann, K. (2013). Tissue specific uptake of inactivated and live Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss): Visualization by immunohistochemistry and in situ hybridization. Microbial Pathogenesis, 59-60, 33-41. https://doi.org/10.1016/j.micpath.2013.03.001
Kim, J. O., Kim, W. S., Kim, S. W., Han, H. J., Kim, J. W., Park, M. A., & Oh, M. J. (2014). Development and application of quantitative detection method for viral hemorrhagic septicemia virus (VHSV) genogroup IVa. Viruses, 6(5), 2204-2213. https://doi.org/10.3390/v6052204
Krogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9(6), 361-371. https://doi.org/10.1046/j.1365-2095.2003.00264.x
Krogdahl, Å., Gajardo, K., Kortner, T. M., Penn, M., Gu, M., Berge, G. M., & Bakke, A. M. (2015). Soya saponins induce enteritis in Atlantic Salmon (Salmo salar L.). Journal of Agricultural and Food Chemistry, 63(15), 3887-3902. https://doi.org/10.1021/jf506242t
le Boucher, R., Dupont-Nivet, M., Vandeputte, M., Kerneïs, T., Goardon, L., Labbé, L., Chatain, B., Bothaire, M. J., Larroquet, L., Médale, F., & Quillet, E. (2012). Selection for adaptation to dietary shifts: Towards sustainable breeding of carnivorous fish. PLoS One, 7(9), e44898. https://doi.org/10.1371/journal.pone.0044898
Lorenzen, E., Carstensen, B., & Olesen, N. J. (1999). Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV. Diseases of Aquatic Organisms, 37(2), 81-88. https://doi.org/10.3354/dao037081
Luthada-Raswiswi, R., Mukaratirwa, S., & O'Brien, G. (2021). Animal protein sources as a substitute for fishmeal in aquaculture diets: A systematic review and meta-analysis. Applied Sciences, 11(9), 3854.
Montero, J., Garcia, J., Ordas, M. C., Casanova, I., Gonzalez, A., Villena, A., Coll, J., & Tafalla, C. (2011). Specific regulation of the chemokine response to viral hemorrhagic septicemia virus at the entry site. Journal of Virology, 85(9), 4046-4056. https://doi.org/10.1128/jvi.02519-10
Palaksha, K. J., Shin, G.-W., Kim, Y.-R., & Jung, T.-S. (2008). Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 24(4), 479-488. https://doi.org/10.1016/j.fsi.2008.01.005
Quillet, E., Dorson, M., Aubard, G., & Torhy, C. (2001). In vitro viral haemorrhagic septicaemia virus replication in excised fins of rainbow trout: Correlation with resistance to waterborne challenge and genetic variation. Diseases of Aquatic Organisms, 45(3), 171-182. https://doi.org/10.3354/dao045171
Quillet, E., Dorson, M., Aubard, G., & Torhy, C. (2007). In vitro assay to select rainbow trout with variable resistance/susceptibility to viral haemorrhagic septicaemia virus. Diseases of Aquatic Organisms, 76(1), 7-16. https://doi.org/10.3354/dao076007
Ragaza, J. A., Hossain, M. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. (2020). A review on spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), 2371-2395. https://doi.org/10.1111/raq.12439
Rahman, M., Arshad, R., Shaharom, F., & Ariffin, N. A. (2012). Amino acid and fatty acid profile in epidermal mucus of bluestreak cleaner wrasse (Labroides dimidiatus): Possible role as defense mechanism against pathogens. Journal of Life Sciences, 6, 1371-1377.
Raj, V. S., Fournier, G., Rakus, K., Ronsmans, M., Ouyang, P., Michel, B., Delforges, C., Costes, B., Farnir, F., Leroy, B., Wattiez, R., Melard, C., Mast, J., Lieffrig, F., & Vanderplasschen, A. (2011). Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Veterinary Research, 42, 92. https://doi.org/10.1186/1297-9716-42-92
Reverter, M., Sasal, P., Banaigs, B., Lecchini, D., Lecellier, G., & Tapissier-Bontemps, N. (2017). Fish mucus metabolome reveals fish life-history traits. Coral Reefs, 36(2), 463-475. https://doi.org/10.1007/s00338-017-1554-0
Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2018). Biological and ecological roles of external fish mucus: A review. Fishes, 3(4), 41.
Roques, S., Deborde, C., Richard, N., Skiba-Cassy, S., Moing, A., & Fauconneau, B. (2020). Metabolomics and fish nutrition: A review in the context of sustainable feed development. Reviews in Aquaculture, 12(1), 261-282. https://doi.org/10.1111/raq.12316
Smail, D. A., & Snow, M. (2011). Viral haemorrhagic septicaemia. In P. T. K. Woo & D. W. Bruno (Eds.), Fish diseases and disorders: Viral, bacterial and fungal infections (pp. 110-142). CABI Publishing.
Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F., & Sandrock, C. (2017). Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed, 3, 165-175. https://doi.org/10.3920/JIFF2016.0056
Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150(1), 85-92. https://doi.org/10.1016/j.cbpb.2008.01.011
Tacchi, L., Secombes, C. J., Bickerdike, R., Adler, M. A., Venegas, C., Takle, H., & Martin, S. A. M. (2012). Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics, 13(1), 363. https://doi.org/10.1186/1471-2164-13-363
Teimouri, M., Amirkolaie, A. K., & Yeganeh, S. (2013). The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396-399, 14-19. https://doi.org/10.1016/j.aquaculture.2013.02.009
Teimouri, M., Yeganeh, S., Mianji, G. R., Najafi, M., & Mahjoub, S. (2019). The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 45(3), 977-986. https://doi.org/10.1007/s10695-019-0608-3
Tiralongo, F., Messina, G., Lombardo, B., Longhitano, L., Li Volti, G., & Tibullo, D. (2020). Skin mucus of marine fish as a source for the development of antimicrobial agents. Frontiers in Marine Science, 7, 541853. https://doi.org/10.3389/fmars.2020.541853
Tobback, E., Hermans, K., Decostere, A., Van den Broeck, W., Haesebrouck, F., & Chiers, K. (2010). Interactions of virulent and avirulent Yersinia ruckeri strains with isolated gill arches and intestinal explants of rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 90(3), 175-179. https://doi.org/10.3354/dao02230
Torrecillas, S., Montero, D., Domínguez, D., Robaina, L., & Izquierdo, M. (2019). Skin mucus fatty acid composition of Gilthead Sea bream (Sparus aurata): A descriptive study in fish fed low and high fish meal diets. Fishes, 4(1), 15.
Uran, P. A., Aydin, R., Schrama, J. W., Verreth, J. A. J., & Rombout, J. H. W. M. (2008). Soybean meal-induced uptake block in Atlantic salmon Salmo salar distal enterocytes. Journal of Fish Biology, 73(10), 2571-2579. https://doi.org/10.1111/j.1095-8649.2008.02091.x
Vielma, J., Mäkinen, T., Ekholm, P., & Koskela, J. (2000). Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture, 183(3), 349-362. https://doi.org/10.1016/S0044-8486(99)00299-9
Watanuki, H., Ota, K., Tassakka, A. R., Kato, T., & Sakai, M. (2006). Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture, 258, 157-163. https://doi.org/10.1016/j.aquaculture.2006.05.003
Zhang, F., Man, Y. B., Mo, W. Y., & Wong, M. H. (2020). Application of spirulina in aquaculture: A review on wastewater treatment and fish growth. Reviews in Aquaculture, 12(2), 582-599. https://doi.org/10.1111/raq.12341