Triple contrast computed tomography reveals site-specific biomechanical differences in the human knee joint-A proof of concept study.
articular cartilage
biomechanical testing
clinical contrast-enhanced computed tomography
osteoarthritis
segmentation
Journal
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
ISSN: 1554-527X
Titre abrégé: J Orthop Res
Pays: United States
ID NLM: 8404726
Informations de publication
Date de publication:
18 Aug 2023
18 Aug 2023
Historique:
revised:
05
07
2023
received:
26
04
2023
accepted:
14
08
2023
pubmed:
18
8
2023
medline:
18
8
2023
entrez:
18
8
2023
Statut:
aheadofprint
Résumé
Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Kymenlaakson Rahasto
ID : 35201579
Organisme : Research Council of Finland
ID : 307932
Organisme : Research Council of Finland
ID : 348410
Organisme : Research Council of Finland
ID : 357787
Organisme : Suomen Kulttuurirahasto
ID : 191044
Organisme : Strategic funding of the University of Eastern Finland
Organisme : Orionin Tutkimussäätiö
Organisme : Instrumentariumin Tiedesäätiö
ID : 190021
Organisme : Kuopio University Foundation
Organisme : Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding
ID : 5041788
Organisme : Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding
ID : 5063579
Informations de copyright
© 2023 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Références
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468.
Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802-809.
Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999;7(1):2-14.
Novakofski KD, Pownder SL, Koff MF, Williams RM, Potter HG, Fortier LA. High-resolution methods for diagnosing cartilage damage in vivo. Cartilage. 2016;7(1):39-51.
Kokkonen HT, Suomalainen JS, Joukainen A, et al. In vivo diagnostics of human knee cartilage lesions using delayed CBCT arthrography. J Orthop Res. 2014;32:403-412.
Kokkonen HT, Aula AS, Kröger H, et al. Delayed computed tomography arthrography of human knee cartilage in vivo. Cartilage. 2012;3(4):334-341.
Hirvasniemi J, Kulmala KaM, Lammentausta E, et al. In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage. Osteoarthritis Cartilage. 2013;21(3):434-442.
van Tiel J, Siebelt M, Reijman M, et al. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthritis Cartilage. 2016;24(6):1012-1020.
Bansal PN, Stewart RC, Entezari V, Snyder BD, Grinstaff MW. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthritis Cartilage. 2011;19(8):970-976.
Lakin BA, Patel H, Holland C, et al. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J Orthop Res. 2016;34(7):1130-1138.
Stewart RC, Patwa AN, Lusic H, et al. Synthesis and preclinical characterization of a cationic iodinated imaging contrast agent (CA4+) and its use for quantitative computed tomography of ex vivo human hip cartilage. J Med Chem. 2017;60(13):5543-5555.
Bhattarai A, Pouran B, Mäkelä JTA, et al. Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast. J Orthop Res. 2020;38(10):2230-2238.
Saukko AEA, Nykänen O, Sarin JK, et al. Dual-contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro. J Orthop Res. 2022;40(3):703-711.
Honkanen MKM, Matikka H, Honkanen JTJ, et al. Imaging of proteoglycan and water contents in human articular cartilage with full-body CT using dual contrast technique. J Orthop Res. 2019;37(5):1059-1070.
Saukko AEA, Turunen MJ, Honkanen MKM, et al. Simultaneous quantitation of cationic and non-ionic contrast agents in articular cartilage using synchrotron microCT imaging. Sci Rep. 2019;9:7118.
Bhattarai A, Mäkelä JTA, Pouran B, et al. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents. J Orthop Res. 2021;39(4):771-779.
Honkanen MKM, Saukko AEA, Turunen MJ, et al. Synchrotron microCT reveals the potential of the dual contrast technique for quantitative assessment of human articular cartilage composition. J Orthop Res. 2020;38(3):563-573.
Paakkari P, Inkinen SI, Honkanen MKM, et al. Quantitative dual contrast photon-counting computed tomography for assessment of articular cartilage health. Sci Rep. 2021;11:5556.
Bhattarai A, Honkanen JTJ, Myller KAH, et al. Quantitative dual contrast CT technique for evaluation of articular cartilage properties. Ann Biomed Eng. 2018;46(7):1038-1046.
Honkanen MKM, Saukko AEA, Turunen MJ, et al. Triple contrast CT method enables simultaneous evaluation of articular cartilage composition and segmentation. Ann Biomed Eng. 2020;48:556-567.
Saukko AEA, Honkanen JTJ, Xu W, et al. Dual contrast CT method enables diagnostics of cartilage injuries and degeneration using a single CT image. Ann Biomed Eng. 2017;45(12):2857-2866.
Honkanen MKM, Mohammadi A, te Moller NCR, et al. Dual-contrast micro-CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Vet J. 2023;55(2):315-324.
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323-1341.
3D Slicer image computing platform. 3D Slicer. Accessed August 23, 2022. https://www.slicer.org/
Stewart RC, Bansal PN, Entezari V, et al. Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology. 2013;266(1):141-150.
Ebrahimi M, Finnilä MAJ, Turkiewicz A, et al. Elastic, dynamic viscoelastic and model-derived fibril-reinforced poroelastic mechanical properties of normal and osteoarthritic human femoral condyle cartilage. Ann Biomed Eng. 2021;49(9):2622-2634.
Ebrahimi M, Ojanen S, Mohammadi A, et al. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann Biomed Eng. 2019;47(4):953-966.
Myller KAH, Honkanen JTJ, Jurvelin JS, Saarakkala S, Töyräs J, Väänänen SP. Method for segmentation of knee articular cartilages based on contrast-enhanced CT images. Ann Biomed Eng. 2018;46(11):1756-1767.
Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med Image Anal. 2019;52:109-118.
Gagnon S, Deignan E, Sim S, et al. Mappings of thickness and mechanical properties of the stifle (Knee) joint cartilage reveal low intraspecies variability. Trans Osteoarthritis Res Soc. 2019;2019(65):1296.
Wong BL, Sah RL. Mechanical asymmetry during articulation of tibial and femoral cartilages: local and overall compressive and shear deformation and properties. J Biomech. 2010;43(9):1689-1695.
Lyyra T, Kiviranta I, Väätäinen U, Helminen HJ, Jurvelin JS. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res. 1999;48(4):482-487.
Leng S, Bruesewitz M, Tao S, et al. Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics. 2019;39(3):729-743.
Rajendran K, Murthy NS, Frick MA, et al. Quantitative knee arthrography in a large animal model of osteoarthritis using photon-counting detector CT. Invest Radiol. 2020;55(6):349-356.
Räsänen LP, Mononen ME, Nieminen MT, Lammentausta E, Jurvelin JS, Korhonen RK. Implementation of subject-specific collagen architecture of cartilage into a 2D computational model of a knee joint-data from the osteoarthritis initiative (OAI): patient-specific collagen architecture in modeling. J Orthop Res. 2013;31(1):10-22.
Räsänen LP, Mononen ME, Lammentausta E, Nieminen MT, Jurvelin JS, Korhonen RK. Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait. Comput Methods Biomech Biomed Engin. 2016;19(11):1225-1240.
Xu W, Cui P, Happonen E, et al. Tailored synthesis of PEGylated bismuth nanoparticles for X-ray computed tomography and photothermal therapy: one-pot, targeted pyrolysis, and self-promotion. ACS Appl Mater Interfaces. 2020;12(42):47233-47244.
Hsu JC, Nieves LM, Betzer O, et al. Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(6):e1642.