Temperature Profile Measurement From Radiofrequency Nasal Airway Reshaping Device.
Arrhenius integral
NOSE
RF treatment
computational modeling
finite element model
nasal airway obstruction
nasal valve collapse
Journal
The Laryngoscope
ISSN: 1531-4995
Titre abrégé: Laryngoscope
Pays: United States
ID NLM: 8607378
Informations de publication
Date de publication:
18 Aug 2023
18 Aug 2023
Historique:
revised:
17
06
2023
received:
25
01
2023
accepted:
19
07
2023
medline:
18
8
2023
pubmed:
18
8
2023
entrez:
18
8
2023
Statut:
aheadofprint
Résumé
Nasal airway obstruction (NAO) is caused by various disorders including nasal valve collapse (NVC). A bipolar radiofrequency (RF) device (VivAer®, Aerin Medical, Sunnyvale, CA) has been used to treat NAO through RF heat generation to the upper lateral cartilage (ULC). The purpose of this study is to measure temperature elevations in nasal tissue, using infrared (IR) radiometry to map the spatial and temporal evolution of temperature. Experimental and computational. Composite porcine nasal septum was harvested and sectioned (1 mm and 2 mm). The device was used to heat the cartilage in composite porcine septum. An IR camera (FLIR® ExaminIR, Teledyne, Wilsonville, OR) was used to image temperature on the back surface of the specimen. These data were incorporated into a heat transfer finite element model that also calculated tissue damage using Arrhenius rate process. IR temperature imaging showed peak back surface temperatures of 49.57°C and 42.21°C in 1 and 2 mm thick septums respectively. Temperature maps were generated demonstrating the temporal and spatial evolution of temperature. A finite element model generated temperature profiles with respect to time and depth. Rate process models using Arrhenius coefficients showed 30% chondrocyte death at 1 mm depth after 18 s of RF treatment. The use of this device creates a thermal profile that may result in thermal injury to cartilage. Computational modeling suggests chondrocyte death extending as deep as 1.4 mm below the treatment surface. Further studies should be performed to improve dosimetry and optimize the heating process to reduce potential injury. Laryngoscope, 2023.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 The American Laryngological, Rhinological and Otological Society, Inc.
Références
Rhee JS, Book DT, Burzynski M, Smith TL. Quality of life assessment in nasal airway obstruction. The Laryngoscope. 2003;113(7):1118-1122. https://doi.org/10.1097/00005537-200307000-00004.
Yamasaki A, Levesque PA, Bleier BS, et al. Improvement in nasal obstruction and quality of life after septorhinoplasty and turbinate surgery: outcomes of Septorhinoplasty and ITR. Laryngoscope. 2019;129(7):1554-1560. https://doi.org/10.1002/lary.27859.
Haight JSJ, Cole P. The site and function of the nasal valve. The Laryngoscope. 1983;93(1):49-55. https://doi.org/10.1288/00005537-198301000-00009.
Hsu DW, Suh JD. Anatomy and physiology of nasal obstruction. Otolaryngol Clin North Am. 2018;51(5):853-865. https://doi.org/10.1016/j.otc.2018.05.001.
Rhee JS, Weaver EM, Park SS, et al. Clinical consensus statement: diagnosis and management of nasal valve compromise. Otolaryngol Neck Surg. 2010;143(1):48-59. https://doi.org/10.1016/j.otohns.2010.04.019.
Cole P. The four components of the nasal valve. Am J Rhinol. 2003;17(2):107-110.
Wexler DB, Davidson TM. The nasal valve: a review of the anatomy, imaging, and physiology. Am J Rhinol. 2004;18(3):143-150.
Kirkness JP, Wheatley JR, Amis TC. Nasal airflow dynamics: mechanisms and responses associated with an external nasal dilator strip. Eur Respir J. 2000;15(5):929-936. https://doi.org/10.1034/j.1399-3003.2000.15e20.x.
Pelton RW, Peterson EA, Patel BCK, Davis K. Successful treatment of rhino-orbital mucormycosis without Exenteration: the use of multiple treatment modalities. Ophthal Plast Reconstr Surg. 2001;17(1):62-66. https://doi.org/10.1097/00002341-200101000-00012.
Khosh MM, Jen A, Honrado C, Pearlman SJ. Nasal valve reconstruction: experience in 53 consecutive patients. Arch Facial Plast Surg. 2004;6(3):167-171. https://doi.org/10.1001/archfaci.6.3.167.
Fischer H, Gubisch W. Nasal valves-importance and surgical procedures. Facial Plast Surg. 2006;22(4):266-280. https://doi.org/10.1055/s-2006-954845.
Spielmann PM, White PS, Hussain SSM. Surgical techniques for the treatment of nasal valve collapse: a systematic review. Laryngoscope. 2009;119(7):1281-1290. https://doi.org/10.1002/lary.20495.
Coste A, Yona L, Blumen M, et al. Radiofrequency is a safe and effective treatment of turbinate hypertrophy. The Laryngoscope. 2001;111(5):894-899. https://doi.org/10.1097/00005537-200105000-00025.
Jacobowitz O, Driver M, Ephrat M. In-office treatment of nasal valve obstruction using a novel, bipolar radiofrequency device. Laryngoscope Investig Otolaryngol. 2019;4(2):211-217. https://doi.org/10.1002/lio2.247.
Jacobowitz O, Ehmer D, Lanier B, Scurry W, Davis B. Long-term outcomes following repair of nasal valve collapse with temperature-controlled radiofrequency treatment for patients with nasal obstruction. Int Forum Allergy Rhinol. 2022;12(11):1442-1446. https://doi.org/10.1002/alr.23019.
Seren E. A new surgical method of dynamic nasal valve collapse. Arch Otolaryngol Neck Surg. 2009;135(10):1010-1014. https://doi.org/10.1001/archoto.2009.135.
Gaon MD, Ho KHK, Wong BJF. Measurement of the elastic modulus of porcine septal cartilage specimens following Nd: YAG laser treatment. Lasers Med Sci. 2003;18(3):148-153. https://doi.org/10.1007/s10103-003-0275-5.
Wong BJF. Stress relaxation of porcine septal cartilage during Nd:YAG (λ=1.32 μm) laser irradiation: mechanical, optical, and thermal responses. J Biomed Opt. 1998;3(4):409-414. https://doi.org/10.1117/1.429896.
Protsenko DE, Zemek A, Wong BJF. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage. Lasers Surg Med. 2008;40(3):202-210. https://doi.org/10.1002/lsm.20611.
Chae Y, Aguilar G, Lavernia EJ, Wong BJF. Characterization of temperature dependent mechanical behavior of cartilage. Lasers Surg Med. 2003;32(4):271-278. https://doi.org/10.1002/lsm.10167.
Youn JI, Telenkov SA, Kim E, et al. Optical and thermal properties of nasal septal cartilage. Lasers Surg Med. 2000;27(2):119-128. https://doi.org/10.1002/1096-9101(2000)27:2<119::aid-lsm3>3.0.co;2-v.
Pearce J, Thomsen S. Rate process analysis of thermal damage. In: Welch AJ, Van Gemert MJC, eds. Optical-Thermal Response of Laser-Irradiated Tissue. Springer US; 1995:561-606. https://doi.org/10.1007/978-1-4757-6092-7_17.
Diaz SH, Nelson JS, Wong BJF. Rate process analysis of thermal damage in cartilage. Phys Med Biol. 2003;48(1):19-29. https://doi.org/10.1088/0031-9155/48/1/302.
Diaz SH, Aguilar G, Lavernia EJ, Wong BJF. Modeling the thermal response of porcine cartilage to laser irradiation. IEEE J Sel Top Quantum Electron. 2001;7(6):944-951. https://doi.org/10.1109/2944.983298.
Diaz-Valdes SH, Aguilar G, Basu R, Lavernia EJ, Wong BJ. Modeling the thermal response of porcine cartilage to laser irradiation. In: Jacques SL, Duncan DD, Kirkpatrick SJ, Kriete A, eds; 2002:47-56. https://doi.org/10.1117/12.472507.
Voss JR, Lu Y, Edwards RB, Bogdanske JJ, Markel MD. Effects of thermal energy on chondrocyte viability. Am J Vet Res. 2006;67(10):1708-1712. https://doi.org/10.2460/ajvr.67.10.1708.
Edwards RB, Lu Y, Rodriguez E, Markel MD. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty. Arthrosc J Arthrosc Relat Surg. 2002;18(4):339-346. https://doi.org/10.1053/jars.2002.29893.
Choi IS, Chae YS, Zemek A, Protsenko DE, Wong B. Viability of human septal cartilage after 1.45 μm diode laser irradiation. Lasers Surg Med. 2008;40(8):562-569. https://doi.org/10.1002/lsm.20663.
Zemek AJ, Protsenko DE, Wong BJF. Mechanical properties of porcine cartilage after uniform RF heating. Lasers Surg Med. 2012;44(7):572-579. https://doi.org/10.1002/lsm.22057.
Fischer R, Krebs R, Scharf HP. Cell vitality in cartilage tissue culture following excimer laser radiation: an in vitro examination. Lasers Surg Med. 1993;13(6):629-637. https://doi.org/10.1002/lsm.1900130607.
Mo JH, Kim JS, Lee JW, Chung PS, Chung YJ. Viability and regeneration of chondrocytes after laser cartilage reshaping using 1,460 nm diode laser. Clin Exp Otorhinolaryngol. 2013;6(2):82-89. https://doi.org/10.3342/ceo.2013.6.2.82.
Mainil-Varlet P, Monin D, Weiler C, et al. Quantification of laser-induced cartilage injury by confocal microscopy in an ex vivo model. J Bone Jt Surg-Am Vol. 2001;83(4):566-571. https://doi.org/10.2106/00004623-200104000-00012.
Lane JG, Amiel ME, Monosov AZ, Amiel D. Matrix assessment of the articular cartilage surface after Chondroplasty with the holmium:YAG laser. Am J Sports Med. 1997;25(4):560-569. https://doi.org/10.1177/036354659702500421.
Karam AM, Protsenko DE, Li C, et al. Long-term viability and mechanical behavior following laser cartilage reshaping. Arch Facial Plast Surg. 2006;8(2):105-116. https://doi.org/10.1001/archfaci.8.2.105.
Jones N, Sviridov A, Sobol E, Omelchenko A, Lowe J. A prospective randomised study of laser reshaping of cartilage In vivo. Lasers Med Sci. 2001;16(4):284-290. https://doi.org/10.1007/PL00011365.
Athanasiou KA, Fischer R, Niederauer GG, Puhl W. Effects of excimer laser on healing of articular cartilage in rabbits. J Orthop Res. 1995;13(4):483-494. https://doi.org/10.1002/jor.1100130403.
Lu Y, Edwards RB, Kalscheur VL, Nho S, Cole BJ, Markel MD. Effect of bipolar radiofrequency energy on human articular cartilage. Arthrosc J Arthrosc Relat Surg. 2001;17(2):117-123. https://doi.org/10.1053/jars.2001.21903.
Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G. Effects of varying intensities of laser energy on articular cartilage: a preliminary study. Lasers Surg Med. 1985;5(6):577-588. https://doi.org/10.1002/lsm.1900050606.
Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9:Doc07. https://doi.org/10.3205/CTO000071.
Brehmer D, Bodlaj R, Gerhards F. A prospective, non-randomized evaluation of a novel low energy radiofrequency treatment for nasal obstruction and snoring. Eur Arch Otorhinolaryngol. 2019;276(4):1039-1047. https://doi.org/10.1007/s00405-018-05270-y.
Wong BJF, Chao KKH, Kim HK, et al. The porcine and lagomorph septal cartilages: models for tissue engineering and morphologic cartilage research. Am J Rhinol. 2001;15(2):109-116. https://doi.org/10.2500/105065801781543790.
IT'IS Foundation. Tissue Properties Database V4.1. Published online 2022. https://doi.org/10.13099/VIP21000-04-1.