Progress of immunotherapies in gestational trophoblastic neoplasms.
Gestational trophoblastic neoplasm
Immune check point inhibitors
Immune micro-environment
Immunotherapy
Journal
Journal of cancer research and clinical oncology
ISSN: 1432-1335
Titre abrégé: J Cancer Res Clin Oncol
Pays: Germany
ID NLM: 7902060
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
22
05
2023
accepted:
18
06
2023
medline:
27
10
2023
pubmed:
18
8
2023
entrez:
18
8
2023
Statut:
ppublish
Résumé
Different from other malignant gynecologic tumors, gestational trophoblastic neoplasms (GTNs) exhibit an exceptionally high cure rate primarily through chemotherapeutic interventions. However, there exists a small subset of refractory GTNs that do not respond to conventional chemotherapies. In such cases, the emergence of immunotherapies has demonstrated significant benefits in managing various challenging GTNs. This article aims to provide a comprehensive and systematic review of the immune microenvironment and immunotherapeutic approaches for GTNs. The purpose is to identify potential biomarkers that could enhance disease management and summarize the available immunotherapies for ease of reference. We reviewed the relevant literatures toward immunotherapies of GTNs from PubMed. Current immunotherapeutic strategies for GTNs mainly revolve around immune checkpoint inhibitors (ICIs) targeting programmed death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Prominent examples include avelumab, pembrolizumab, and camrelizumab. However, existing researches into the underlying mechanisms are still limited.
Sections du résumé
BACKGROUND
BACKGROUND
Different from other malignant gynecologic tumors, gestational trophoblastic neoplasms (GTNs) exhibit an exceptionally high cure rate primarily through chemotherapeutic interventions. However, there exists a small subset of refractory GTNs that do not respond to conventional chemotherapies. In such cases, the emergence of immunotherapies has demonstrated significant benefits in managing various challenging GTNs.
PURPOSE
OBJECTIVE
This article aims to provide a comprehensive and systematic review of the immune microenvironment and immunotherapeutic approaches for GTNs. The purpose is to identify potential biomarkers that could enhance disease management and summarize the available immunotherapies for ease of reference.
METHODS
METHODS
We reviewed the relevant literatures toward immunotherapies of GTNs from PubMed.
CONCLUSION
CONCLUSIONS
Current immunotherapeutic strategies for GTNs mainly revolve around immune checkpoint inhibitors (ICIs) targeting programmed death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Prominent examples include avelumab, pembrolizumab, and camrelizumab. However, existing researches into the underlying mechanisms are still limited.
Identifiants
pubmed: 37594534
doi: 10.1007/s00432-023-05010-8
pii: 10.1007/s00432-023-05010-8
doi:
Substances chimiques
B7-H1 Antigen
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
15275-15285Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abu-Rustum NR, Yashar CM, Bean S et al (2019) Gestational trophoblastic neoplasia, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 17(11):1374–1391
pubmed: 31693991
doi: 10.6004/jnccn.2019.0053
Anantharaju AA, Pallavi VR, Bafna UD et al (2019) Role of salvage therapy in chemo resistant or recurrent high-risk gestational trophoblastic neoplasm. Int J Gynecol Cancer 29(3):547–553
pubmed: 30700567
doi: 10.1136/ijgc-2018-000050
Artenie A, Stone J, Fraser H et al (2023) Incidence of HIV and hepatitis C virus among people who inject drugs, and associations with age and sex or gender: a global systematic review and meta-analysis. Lancet Gastroenterol Hepatol 8(6):533–552
pubmed: 36996853
doi: 10.1016/S2468-1253(23)00018-3
Banach P, Dereziński P, Matysiak J et al (2018) Serum angiogenesis profile in gestational trophoblastic neoplasm using multiplex immunoassay. Life Sci 211:25–30
pubmed: 30195618
doi: 10.1016/j.lfs.2018.08.070
Barsoum IB, Smallwood CA, Siemens DR et al (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74(3):665–674
pubmed: 24336068
doi: 10.1158/0008-5472.CAN-13-0992
Berkowitz RS, Goldstein DP (2009) Clinical practice. Molar Pregnancy. N Engl J Med 360(16):1639–1645
pubmed: 19369669
doi: 10.1056/NEJMcp0900696
Bolze PA, Patrier S, Massardier J et al (2017) PD-L1 expression in premalignant and malignant trophoblasts from gestational trophoblastic diseases is ubiquitous and independent of clinical outcomes. Int J Gynecol Cancer 27(3):554–561
pubmed: 28060141
doi: 10.1097/IGC.0000000000000892
Borella F, Cosma S, Ferraioli D et al (2022) From uterus to brain: an update on epidemiology, clinical features, and treatment of brain metastases from gestational trophoblastic neoplasia. Front Oncol 12:859071
pubmed: 35493999
pmcid: 9045690
doi: 10.3389/fonc.2022.859071
Braga A, Elias KM, Horowitz NS et al (2021) Treatment of high-risk gestational trophoblastic neoplasia and chemoresistance/relapsed disease. Best Pract Res Clin Obstet Gynaecol 74:81–96
pubmed: 33622563
doi: 10.1016/j.bpobgyn.2021.01.005
Carosella ED, Rouas-Freiss N, Tronik-Le Roux D et al (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144
pubmed: 26073983
doi: 10.1016/bs.ai.2015.04.001
Cheng H, Zong L, Kong Y et al (2021) Camrelizumab plus apatinib in patients with high-risk chemorefractory or relapsed gestational trophoblastic neoplasia (CAP 01): a single-arm, open-label, phase 2 trial. Lancet Oncol 22(11):1609–1617
pubmed: 34624252
doi: 10.1016/S1470-2045(21)00460-5
Choi MC, Oh J, Lee C (2019) Effective anti-programmed cell death 1 treatment for chemoresistant gestational trophoblastic neoplasia. Eur J Cancer 121:94–97
pubmed: 31569067
doi: 10.1016/j.ejca.2019.08.024
Clair KH, Gallegos N, Bristow RE (2020) Successful treatment of metastatic refractory gestational choriocarcinoma with pembrolizumab: a case for immune checkpoint salvage therapy in trophoblastic tumors. Gynecol Oncol Rep 34:100625
pubmed: 32964090
pmcid: 7490982
doi: 10.1016/j.gore.2020.100625
Fanoni D, Tavecchio S, Recalcati S et al (2011) New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett 134(2):157–160
pubmed: 20951741
doi: 10.1016/j.imlet.2010.09.022
Frijstein MM, Lok CAR, Short D et al (2019) The results of treatment with high-dose chemotherapy and peripheral blood stem cell support for gestational trophoblastic neoplasia. Eur J Cancer 109:162–171
pubmed: 30731277
doi: 10.1016/j.ejca.2018.12.033
Ghorani E, Kaur B, Fisher RA et al (2017) Pembrolizumab is effective for drug-resistant gestational trophoblastic neoplasia. Lancet 390(10110):2343–2345
pubmed: 29185430
doi: 10.1016/S0140-6736(17)32894-5
Habicht A, Dada S, Jurewicz M et al (2007) A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol 179(8):5211–5219
pubmed: 17911606
doi: 10.4049/jimmunol.179.8.5211
Hancock BW, Tidy J (2021) Placental site trophoblastic tumour and epithelioid trophoblastic tumour. Best Pract Res 74:131–148
doi: 10.1016/j.bpobgyn.2020.10.004
Hoeijmakers YM, Gorris MAJ, Sweep FCGJ et al (2021) Immune cell composition in the endometrium of patients with a complete molar pregnancy: effects on outcome. Gynecol Oncol 160(2):450–456
pubmed: 33213898
doi: 10.1016/j.ygyno.2020.11.005
Horowitz NS, Goldstein DP, Berkowitz RS (2017) Placental site trophoblastic tumors and epithelioid trophoblastic tumors: biology, natural history, and treatment modalities. Gynecol Oncol 144(1):208–214
pubmed: 27789086
doi: 10.1016/j.ygyno.2016.10.024
Huang M, Pinto A, Castillo RP et al (2017) Complete serologic response to pembrolizumab in a woman with chemoresistant metastatic choriocarcinoma. J Clin Oncol 35(27):3172–3174
pubmed: 28742453
doi: 10.1200/JCO.2017.74.4052
Humeau J, Sauvat A, Cerrato G et al (2020) Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Mol Med 12(5):e11622
pubmed: 32323922
pmcid: 7207166
doi: 10.15252/emmm.201911622
Ikoma Y, Nomura S, Ito T et al (2003) Interleukin-1beta stimulates placental leucine aminopeptidase/oxytocinase expression in BeWo choriocarcinoma cells. Mol Hum Reprod 9(2):103–110
pubmed: 12569180
doi: 10.1093/molehr/gag015
Inaguma S, Wang Z, Lasota J et al (2016) Comprehensive immunohistochemical study of programmed cell death ligand 1 (PD-L1): analysis in 5536 cases revealed consistent expression in trophoblastic tumors. Am J Surg Pathol 40(8):1133–1142
pubmed: 27158757
pmcid: 4942373
doi: 10.1097/PAS.0000000000000653
Ishii M, Hayakawa S, Suzuki MK et al (2000) Expression of functional chemokine receptors of human placental cells. Am J Reprod Immunol 44(6):365–373
pubmed: 11200816
doi: 10.1111/j.8755-8920.2000.440608.x
Jørgensen N, Persson G, Hviid TVF (2019) The tolerogenic function of regulatory T cells in pregnancy and cancer. Front Immunol 10:911
pubmed: 31134056
pmcid: 6517506
doi: 10.3389/fimmu.2019.00911
Kaur B (2021) Pathology of gestational trophoblastic disease (GTD). Best Pract Res Clin Obstet Gynaecol 74:3–28
pubmed: 34219021
doi: 10.1016/j.bpobgyn.2021.02.005
Knoeller S, Lim E, Aleta L et al (2003) Distribution of immunocompetent cells in decidua of controlled and uncontrolled (choriocarcinoma/hydatidiform mole) trophoblast invasion. Am J Reprod Immunol 50(1):41–47
pubmed: 14506927
doi: 10.1034/j.1600-0897.2003.00046.x
Lala PK, Nandi P (2016) Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: the role of decorin. Cell Adh Migr 10(1–2):111–125
pubmed: 26745663
pmcid: 4853052
doi: 10.1080/19336918.2015.1106669
Lala PK, Nandi P, Hadi A et al (2021) A crossroad between placental and tumor biology: What have we learnt? Placenta 116:12–30
pubmed: 33958236
doi: 10.1016/j.placenta.2021.03.003
Lan R, Yang Y, Song J et al (2021) Fas regulates the apoptosis and migration of trophoblast cells by targeting NF-κB. Exp Ther Med 22(4):1055
pubmed: 34434269
pmcid: 8353647
doi: 10.3892/etm.2021.10489
Landskron G, De la Fuente M, Thuwajit P et al (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185
pubmed: 24901008
pmcid: 4036716
doi: 10.1155/2014/149185
Lappas M, Yee K, Permezel M et al (2006) Lipopolysaccharide and TNF-alpha activate the nuclear factor kappa B pathway in the human placental JEG-3 cells. Placenta 27(6–7):568–575
pubmed: 16122789
doi: 10.1016/j.placenta.2005.06.003
Lu B, Teng X, Fu G et al (2019) Analysis of PD-L1 expression in trophoblastic tissues and tumors. Hum Pathol 84:202–212
pubmed: 30339966
doi: 10.1016/j.humpath.2018.10.001
Lurain JR (2010) Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol 203(6):531–539
pubmed: 20728069
doi: 10.1016/j.ajog.2010.06.073
Lurain JR, Nejad B (2005) Secondary chemotherapy for high-risk gestational trophoblastic neoplasia. Gynecol Oncol 97(2):618–623
pubmed: 15863169
doi: 10.1016/j.ygyno.2005.02.004
Madigan J, Freeman DJ, Menzies F et al (2010) Chemokine scavenger D6 is expressed by trophoblasts and aids the survival of mouse embryos transferred into allogeneic recipients. J Immunol 184(6):3202–3212
pubmed: 20147628
doi: 10.4049/jimmunol.0902118
Marth C, Berger P, Zwierzina H et al (1995) Modification of chorionic carcinoma cells by immunomodulators. Cytokines and chorionic carcinoma cells. Gynakol Geburtshilfliche Rundsch 35(Suppl 1):9–10
pubmed: 8672935
doi: 10.1159/000272554
Maskalenko NA, Zhigarev D, Campbell KS (2022) Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 21(8):559–577
pubmed: 35314852
pmcid: 10019065
doi: 10.1038/s41573-022-00413-7
Melsted WN, Matzen SH, Andersen MH et al (2018) The choriocarcinoma cell line JEG-3 upregulates regulatory T cell phenotypes and modulates pro-inflammatory cytokines through HLA-G. Cell Immunol 324:14–23
pubmed: 29198970
doi: 10.1016/j.cellimm.2017.11.008
Mirdamadi K, Kwok J, Nevo O et al (2021) Impact of Th-17 cytokines on the regulation of transporters in human placental explants. Pharmaceutics 13(6):881
pubmed: 34203644
pmcid: 8232183
doi: 10.3390/pharmaceutics13060881
Ngu SF, Ngan HYS (2021) Surgery including fertility-sparing treatment of GTD. Best Pract Res Clin Obstet Gynaecol 74:97–108
pubmed: 33127305
doi: 10.1016/j.bpobgyn.2020.10.005
Ni L, Dong C (2017) New B7 family checkpoints in human cancers. Mol Cancer Ther 16(7):1203–1211
pubmed: 28679835
pmcid: 5568666
doi: 10.1158/1535-7163.MCT-16-0761
Nishino K, Yamamoto E, Oda Y et al (2021) Short tandem repeat analysis to identify the causative pregnancy of high-risk gestational trophoblastic neoplasia: molar versus nonmolar pregnancy and its relation to the outcome. Placenta 112:28–35
pubmed: 34247032
doi: 10.1016/j.placenta.2021.06.015
Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129(3):311–321
pubmed: 20409152
pmcid: 2826676
doi: 10.1111/j.1365-2567.2009.03240.x
Palma MB, Tronik-Le Roux D, Amín G et al (2021) HLA-G gene editing in tumor cell lines as a novel alternative in cancer immunotherapy. Sci Rep 11(1):22158
pubmed: 34773056
pmcid: 8589947
doi: 10.1038/s41598-021-01572-0
Persson G, Melsted WN, Nilsson LL et al (2017) HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics 69(8–9):581–595
pubmed: 28699111
doi: 10.1007/s00251-017-0988-4
Persson G, Bork JBS, Isgaard C et al (2020) Cytokine stimulation of the choriocarcinoma cell line JEG-3 leads to alterations in the HLA-G expression profile. Cell Immunol 352:104110
pubmed: 32387976
doi: 10.1016/j.cellimm.2020.104110
Polnaszek B, Mullen M, Bligard K et al (2021) Term pregnancy after complete response of placental site trophoblastic tumor to immunotherapy. Obstet Gynecol 138(1):115–118
pubmed: 34259474
doi: 10.1097/AOG.0000000000004434
Premyslova M, Chisaka H, Okamura K et al (2006) IL-1beta treatment does not co-ordinately up-regulate mPGES-1 and COX-2 mRNA expression, but results in higher degree of cellular and intracellular co-localization of their immunoreactive proteins in human placenta trophoblast cells. Placenta 27(6–7):576–586
pubmed: 16183115
doi: 10.1016/j.placenta.2005.07.005
Rajashekhar G, Loganath A, Roy AC et al (2003) Co-expression of Fas (APO-1, CD95)/Fas ligand by BeWo and NJG choriocarcinoma cell lines. Gynecol Oncol 91(1):101–111
pubmed: 14529668
doi: 10.1016/S0090-8258(03)00397-4
Safarzadeh A, Alizadeh M, Beyranvand F et al (2021) Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 70(3):569–588
pubmed: 32902664
doi: 10.1007/s00262-020-02717-2
Salman L, Bouchard-Fortier G, Covens A (2022) Immune checkpoint inhibitors for the treatment of gestational trophoblastic neoplasia: rationale, effectiveness, and future fertility. Curr Treat Options Oncol 23(7):1035–1043
pubmed: 35511345
doi: 10.1007/s11864-022-00988-8
Savage P, Kelpanides I, Tuthill M et al (2015) Brain metastases in gestational trophoblast neoplasia: an update on incidence, management and outcome. Gynecol Oncol 137(1):73–76
pubmed: 25598530
doi: 10.1016/j.ygyno.2015.01.530
Seckl MJ, Sebire NJ, Berkowitz RS (2010) Gestational trophoblastic disease. Lancet 376(9742):717–729
pubmed: 20673583
doi: 10.1016/S0140-6736(10)60280-2
Shaarawy M, Darwish NA (1995) Serum cytokines in gestational trophoblastic diseases. Acta Oncol (stockholm, Sweden) 34(2):177–182
doi: 10.3109/02841869509093953
Shapter AP, McLellan R (2001) Gestational trophoblastic disease. Obstet Gynecol Clin N Am 28(4):805–817
doi: 10.1016/S0889-8545(05)70237-0
Silva A, Monteiro KDN, Sun SY et al (2021) Gestational trophoblastic neoplasia: novelties and challenges. Placenta 116:38–42
pubmed: 33685753
doi: 10.1016/j.placenta.2021.02.013
Sun SY, Melamed A, Goldstein DP et al (2015) Changing presentation of complete hydatidiform mole at the New England Trophoblastic Disease Center over the past three decades: does early diagnosis alter risk for gestational trophoblastic neoplasia? Gynecol Oncol 138(1):46–49
pubmed: 25969351
doi: 10.1016/j.ygyno.2015.05.002
Sundara YT, Jordanova ES, Hernowo BS et al (2012) Decidual infiltration of FoxP3
pubmed: 22002546
Tabarkiewicz J, Pogoda K, Karczmarczyk A et al (2015) The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp 63(6):435–449
doi: 10.1007/s00005-015-0344-z
Tameishi M, Kobori T, Tanaka C et al (2021) Contribution of ezrin on the cell surface plasma membrane localization of programmed cell death ligand-1 in human choriocarcinoma JEG-3 cells. Pharmaceuticals (basel) 14(10):963
pubmed: 34681187
doi: 10.3390/ph14100963
Terme M, Ullrich E, Aymeric L et al (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res 71(16):5393–5399
pubmed: 21724589
doi: 10.1158/0008-5472.CAN-11-0993
Tripathi V, Kumar R, Dinda AK et al (2014) CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells. Cell Commun Adhes 21(4):221–228
pubmed: 24450273
doi: 10.3109/15419061.2013.876013
Tsonis O, Karpathiou G, Tsonis K et al (2020) Immune cells in normal pregnancy and gestational trophoblastic diseases. Placenta 101:90–96
pubmed: 32942146
doi: 10.1016/j.placenta.2020.09.006
Veras E, Kurman RJ, Wang TL et al (2017) PD-L1 expression in human placentas and gestational trophoblastic diseases. Int J Gynecol Pathol 36(2):146–153
pubmed: 27362903
pmcid: 5518625
doi: 10.1097/PGP.0000000000000305
Viola A, Munari F, Sánchez-Rodríguez R et al (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462
pubmed: 31333642
pmcid: 6618143
doi: 10.3389/fimmu.2019.01462
Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012:819467
doi: 10.1155/2012/819467
Wang X, Fu S, Freedman RS et al (2006) Immunobiology of gestational trophoblastic diseases. Int J Gynecol Cancer 16(4):1500–1515
pubmed: 16884358
doi: 10.1111/j.1525-1438.2006.00539.x
Wang X, Cang W, Liu X et al (2023) Anti-PD-1 therapy plus chemotherapy versus anti-PD-1 therapy alone in patients with high-risk chemorefractory or relapsed gestational trophoblastic neoplasia: a multicenter, retrospective study. EClinicalMedicine 59:101974
pubmed: 37152364
pmcid: 10154962
doi: 10.1016/j.eclinm.2023.101974
Winter MC (2021) Treatment of low-risk gestational trophoblastic neoplasia. Best Pract Res Clin Obstet Gynaecol 74:67–80
pubmed: 33741258
doi: 10.1016/j.bpobgyn.2021.01.006
Wongweragiat S, Searle RF, Bulmer JN (1999) Decidual T lymphocyte activation in hydatidiform mole. J Clin Pathol 52(12):888–894
pubmed: 10711251
pmcid: 501654
doi: 10.1136/jcp.52.12.888
Yockey LJ, Iwasaki A (2018) Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity 49(3):397–412
pubmed: 30231982
pmcid: 6152841
doi: 10.1016/j.immuni.2018.07.017
You B, Bolze PA, Lotz JP et al (2020) Avelumab in patients with gestational trophoblastic tumors with resistance to single-agent chemotherapy: cohort A of the TROPHIMMUN phase II trial. J Clin Oncol 38(27):3129–3137
pubmed: 32716740
pmcid: 7499607
doi: 10.1200/JCO.20.00803
Zhao J, Lv WG, Feng FZ et al (2016) Placental site trophoblastic tumor: a review of 108 cases and their implications for prognosis and treatment. Gynecol Oncol 142(1):102–108
pubmed: 27168005
doi: 10.1016/j.ygyno.2016.05.006
Zhong T, Xie X, Zong T et al (2018) Lectin histochemical analysis of uterine natural killer cells in normal, hydatidiform molar and invasive molar pregnancy. Oncol Lett 16(5):6458–6464
pubmed: 30405783
pmcid: 6202520
Zong L, Zhang M, Wang W et al (2019) PD-L1, B7–H3 and VISTA are highly expressed in gestational trophoblastic neoplasia. Histopathology 75(3):421–430
pubmed: 31013360
doi: 10.1111/his.13882