Myocardial extracellular volume quantification in cardiac amyloidosis: a comparative study between cardiac computed tomography and magnetic resonance imaging.

Cardiac amyloidosis Computed tomography Magnetic resonance imaging Myocardial extracellular volume

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
19 Aug 2023
Historique:
received: 27 05 2023
accepted: 04 07 2023
revised: 27 06 2023
medline: 19 8 2023
pubmed: 19 8 2023
entrez: 19 8 2023
Statut: aheadofprint

Résumé

Myocardial extracellular volume (ECV) on computed tomography (CT), an alternative to cardiac magnetic resonance (CMR), has significant practical clinical advantages. However, the consistency between ECVs quantified via CT and CMR in cardiac amyloidosis (CA) has not been investigated sufficiently. Therefore, the current study investigated the application of CT-ECV in CA with CMR-ECV as the reference standard. We retrospectively evaluated 31 patients with CA who underwent cardiac CT and CMR. Pearson correlation analysis was performed to investigate correlations between CT-ECV and CMR-ECV at each segment. Further, correlations between ECV and clinical parameters were assessed. There were no significant differences in the mean global ECVs between CT scan and CMR (51.3% ± 10.2% vs 50.0% ± 10.5%). CT-ECV was correlated with CMR-ECV at the septal (r = 0.88), lateral (r = 0.80), inferior (r = 0.79), anterior (r = 0.77) segments, and global (r = 0.87). In both CT and CMR, the ECV had a weak to strong correlation with high-sensitivity cardiac troponin T level, a moderate correlation with global longitudinal strain, and an inverse correlation with left ventricular ejection fraction. Further, the septal ECV and global ECV had a slightly higher correlation with the clinical parameters. Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA. Moreover, a significant correlation between CT-ECV and clinical parameters was observed. Thus, CT-ECV can be an imaging biomarker and alternative to CMR-ECV. Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA, and CT-ECV can be used clinically as an imaging biomarker and alternative to CMR-ECV. • A significant correlation was found between CT myocardial extracellular volume and cardiac MR myocardial extracellular volume in patients with cardiac amyloidosis. • In CT and cardiac MR, the myocardial extracellular volume correlated well with high-sensitivity cardiac troponin T level, global longitudinal strain, and left ventricular ejection fraction. • CT myocardial extracellular volume can be an imaging biomarker and alternative to cardiac MR myocardial extracellular volume.

Identifiants

pubmed: 37597032
doi: 10.1007/s00330-023-10129-w
pii: 10.1007/s00330-023-10129-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Society of Radiology.

Références

Lilleness B, Ruberg FL, Mussinelli R, Doros G, Sanchorawala V (2019) Development and validation of a survival staging system incorporating BNP in patients with light chain amyloidosis. Blood 133:215–223
doi: 10.1182/blood-2018-06-858951 pubmed: 30333122
Gillmore JD, Damy T, Fontana M et al (2018) A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 39:2799–2806
doi: 10.1093/eurheartj/ehx589 pubmed: 29048471
Cheng RK, Levy WC, Vasbinder A et al (2020) Diuretic dose and NYHA functional class are independent predictors of mortality in patients with transthyretin cardiac amyloidosis. JACC CardioOncol 2:414–424
doi: 10.1016/j.jaccao.2020.06.007 pubmed: 33073249 pmcid: 7561022
Mohammed SF, Mirzoyev SA, Edwards WD et al (2014) Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2:113–122
doi: 10.1016/j.jchf.2013.11.004 pubmed: 24720917 pmcid: 3984539
Donnellan E, Wazni OM, Hanna M et al (2020) Atrial fibrillation in transthyretin cardiac amyloidosis: predictors, prevalence, and efficacy of rhythm control strategies. JACC Clin Electrophysiol 6:1118–1127
doi: 10.1016/j.jacep.2020.04.019 pubmed: 32972546
Treibel TA, Fontana M, Gilbertson JA et al (2016) Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging 9:e005066
doi: 10.1161/CIRCIMAGING.116.005066 pubmed: 27511979
Kastritis E, Palladini G, Minnema MC et al (2021) Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N Engl J Med 385:46–58
doi: 10.1056/NEJMoa2028631 pubmed: 34192431
Rapezzi C, Elliott P, Damy T et al (2021) Efficacy of tafamidis in patients with hereditary and wild-type transthyretin amyloid cardiomyopathy: further analyses from ATTR-ACT. JACC Heart Fail 9:115–123
doi: 10.1016/j.jchf.2020.09.011 pubmed: 33309574
Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21
doi: 10.1056/NEJMoa1716153 pubmed: 29972753
Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31
doi: 10.1056/NEJMoa1716793 pubmed: 29972757
Oda S, Kidoh M, Nagayama Y et al (2020) Trends in diagnostic imaging of cardiac amyloidosis: emerging knowledge and concepts. Radiographics 40:961–981
doi: 10.1148/rg.2020190069 pubmed: 32442047
Lin L, Li X, Feng J et al (2018) The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 20:2
doi: 10.1186/s12968-017-0419-6 pubmed: 29298704 pmcid: 5753536
Martinez-Naharro A, Kotecha T, Norrington K et al (2019) Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 12:810–819
doi: 10.1016/j.jcmg.2018.02.006 pubmed: 29550324
Dorbala S, Ando Y, Bokhari S et al (2021) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2-Diagnostic Criteria and Appropriate Utilization. Circ Cardiovasc Imaging 14:e000030
pubmed: 34196222
Oda S, Emoto T, Nakaura T et al (2019) Myocardial late iodine enhancement and extracellular volume quantification with dual-layer spectral detector dual-energy cardiac CT. Radiol Cardiothorac Imaging 1:e180003
Emoto T, Kidoh M, Oda S et al (2020) Myocardial extracellular volume quantification in cardiac CT: comparison of the effects of two different iterative reconstruction algorithms with MRI as a reference standard. Eur Radiol 30:691–701
doi: 10.1007/s00330-019-06418-y pubmed: 31471751
Gama F, Rosmini S, Bandula S et al (2022) Extracellular volume fraction by computed tomography predicts long-term prognosis among patients with cardiac amyloidosis. JACC Cardiovasc Imaging 15:2082–2094
doi: 10.1016/j.jcmg.2022.08.006 pubmed: 36274040
Deux JF, Nouri R, Tacher V et al (2021) Diagnostic value of extracellular volume quantification and myocardial perfusion analysis at CT in cardiac amyloidosis. Radiology 300:326–335
doi: 10.1148/radiol.2021204192 pubmed: 34100681
Garcia-Pavia P, Rapezzi C, Adler Y et al (2021) Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J 42:1554–1568
doi: 10.1093/eurheartj/ehab072 pubmed: 33825853 pmcid: 8060056
Kurita Y, Kitagawa K, Kurobe Y et al (2016) Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: a feasibility study. J Cardiovasc Comput Tomogr 10:237–241
doi: 10.1016/j.jcct.2016.02.001 pubmed: 26968674
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163
doi: 10.1016/j.jcm.2016.02.012 pubmed: 27330520 pmcid: 4913118
Oda S, Kidoh M, Takashio S et al (2020) Quantification of myocardial extracellular volume with planning computed tomography for transcatheter aortic valve replacement to identify occult cardiac amyloidosis in patients with severe aortic stenosis. Circ Cardiovasc Imaging 13:e010358
doi: 10.1161/CIRCIMAGING.119.010358 pubmed: 32370615
Oda S, Kidoh M, Takashio S et al (2020) Identification of wild-type transthyretin cardiac amyloidosis by quantifying myocardial extracellular volume using cardiac computed tomography in atrial arrhythmias. Circ Cardiovasc Imaging 13:e010261
doi: 10.1161/CIRCIMAGING.119.010261 pubmed: 32438825
Nacif MS, Kawel N, Lee JJ et al (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264:876–883
doi: 10.1148/radiol.12112458 pubmed: 22771879 pmcid: 3426854
Jablonowski R, Wilson MW, Do L, Hetts SW, Saeed M (2015) Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology 274:370–378
doi: 10.1148/radiol.14140131 pubmed: 25247406
Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403
doi: 10.1148/radiol.13130130 pubmed: 23878282
Treibel TA, Bandula S, Fontana M et al (2015) Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 9:585–592
doi: 10.1016/j.jcct.2015.07.001 pubmed: 26209459 pmcid: 4684159
Dubourg B, Dacher JN, Durand E et al (2021) Single-source dual energy CT to assess myocardial extracellular volume fraction in aortic stenosis before transcatheter aortic valve implantation (TAVI). Diagn Interv Imaging 102:561–570
doi: 10.1016/j.diii.2021.03.003 pubmed: 33903056
Lee HJ, Im DJ, Youn JC et al (2016) Myocardial extracellular volume fraction with dual-energy equilibrium contrast-enhanced cardiac CT in nonischemic cardiomyopathy: a prospective comparison with cardiac MR imaging. Radiology 280:49–57
doi: 10.1148/radiol.2016151289 pubmed: 27322972
Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19:75
doi: 10.1186/s12968-017-0389-8 pubmed: 28992817 pmcid: 5633041
Kitaoka H, Izumi C, Izumiya Y et al (2020) JCS 2020 Guideline on Diagnosis and Treatment of Cardiac Amyloidosis. Circ J 84:1610–1671
doi: 10.1253/circj.CJ-20-0110 pubmed: 32830187

Auteurs

Hidetaka Hayashi (H)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Seitaro Oda (S)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. seisei0430@nifty.com.

Masafumi Kidoh (M)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Shinpei Yamaguchi (S)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.

Fumihiro Yoshimura (F)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Seiji Takashio (S)

Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Hiroki Usuku (H)

Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Yasunori Nagayama (Y)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Takeshi Nakaura (T)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Mitsuharu Ueda (M)

Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

Kenichi Tsujita (K)

Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Toshinori Hirai (T)

Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.

Classifications MeSH