Novel biogenic silver nanoconjugates of Abrus precatorius seed extracts and their antiproliferative and antiangiogenic efficacies.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 08 2023
19 08 2023
Historique:
received:
04
11
2022
accepted:
04
08
2023
medline:
21
8
2023
pubmed:
20
8
2023
entrez:
19
8
2023
Statut:
epublish
Résumé
Biogenic silver nanoconjugates (AgNCs), derived from medicinal plants, have been widely explored in the field of biomedicines. AgNCs for the first-time were synthesized using ethyl acetate seed extracts of Abrus precatorius and their antiproliferative and antiangiogenic efficacies were evaluated against cervical and oral carcinoma. Ultraviolet-Visible spectrophotometry, dynamic light Scattering (DLS), and scanning electron microscopy (SEM) were used for characterization of AgNCs. Antiproliferative activity was investigated using MTT, DNA fragmentation and in-vitro antioxidant enzyme activity assays. In-vivo chick chorioallantoic membrane (CAM) model was used to evaluate antiangiogenic activity. A total of 11 compounds were identified in both the extracts in GCMS analysis. The synthesized AgNCs were spherical shaped with an average size of 97.4 nm for AgAPE (Sox) and 64.3 nm for AgAPE (Mac). AgNCs possessed effective inhibition against Hep2C and KB cells. In Hep2C cells, AgAPE (Mac) revealed the highest SOD, catalase, GST activity and lower MDA content, whereas AgAPE (Sox) showed the highest GSH content. On the other hand, in KB cells, AgAPE (Sox) exhibited the higher SOD, GST activity, GSH content, and least MDA content, while AgAPE (Mac) displayed the highest levels of catalase activity. Docking analysis revealed maximum binding affinity of safrole and linoleic acid with selected targets. AgAPE (Sox), AgAPE (Mac) treatment profoundly reduced the thickness, branching, and sprouting of blood vessels in the chick embryos. This study indicates that A. precatorius-derived AgNCs have enhanced efficacies against cervical and oral carcinoma as well as against angiogenesis, potentially limiting tumour growth.
Identifiants
pubmed: 37598190
doi: 10.1038/s41598-023-40079-8
pii: 10.1038/s41598-023-40079-8
pmc: PMC10439965
doi:
Substances chimiques
Catalase
EC 1.11.1.6
Nanoconjugates
0
Silver
3M4G523W1G
Plant Extracts
0
Superoxide Dismutase
EC 1.15.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13514Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. Springer Nature Limited.
Références
3 Biotech. 2016 Dec;6(2):216
pubmed: 28330288
J Adv Res. 2017 Nov 02;9:1-16
pubmed: 30046482
BMC Complement Med Ther. 2021 May 29;21(1):159
pubmed: 34051782
Foods. 2016 May 25;5(2):
pubmed: 28231136
Theranostics. 2020 Jul 11;10(20):8996-9031
pubmed: 32802176
Sci Rep. 2021 Jan 12;11(1):552
pubmed: 33436696
Bioresour Technol. 2012 Jun;113:132-5
pubmed: 22297042
J Photochem Photobiol B. 2017 Feb;167:282-289
pubmed: 28110253
ACS Omega. 2022 Apr 19;7(17):14723-14734
pubmed: 35557704
PLoS One. 2019 Jun 20;14(6):e0216496
pubmed: 31220110
Front Oncol. 2020 Oct 20;10:575415
pubmed: 33194686
Int J Environ Res Public Health. 2019 Feb 19;16(4):
pubmed: 30791374
Trends Cell Biol. 1995 Jan;5(1):21-6
pubmed: 14731429
Reprod Toxicol. 2017 Jun;70:97-101
pubmed: 27832950
Smart Mater Med. 2020;1:10-19
pubmed: 34553138
PLoS One. 2015 Oct 14;10(10):e0138801
pubmed: 26465941
Int J Gynecol Cancer. 2017 Jul;27(6):1247-1255
pubmed: 28472813
Acta Biomater. 2011 Dec;7(12):4253-8
pubmed: 21798382
Anal Bioanal Chem. 2002 Dec;374(7-8):1199-204
pubmed: 12474085
Asian Pac J Trop Biomed. 2014 May;4(Suppl 1):S27-34
pubmed: 25183095
J Am Chem Soc. 2013 Dec 18;135(50):18850-8
pubmed: 24294991
J Cell Physiol. 1993 Jul;156(1):72-9
pubmed: 8314861
Sci Rep. 2022 May 25;12(1):8831
pubmed: 35614187
CA Cancer J Clin. 2021 May;71(3):209-249
pubmed: 33538338
Cancers (Basel). 2021 Jun 05;13(11):
pubmed: 34198769
Free Radic Biol Med. 2015 Oct;87:84-97
pubmed: 26117330
Arch Gynecol Obstet. 2019 Jan;299(1):203-209
pubmed: 30306311
J Nanosci Nanotechnol. 2017 Feb;17(2):968-76
pubmed: 29671484
J Biomol Struct Dyn. 2023 Jul;41(11):5246-5260
pubmed: 35674735
Drug Resist Updat. 2004 Apr;7(2):97-110
pubmed: 15158766
Sci Rep. 2022 Jun 17;12(1):10226
pubmed: 35715430
Biomolecules. 2019 Oct 28;9(11):
pubmed: 31661912
Int J Med Sci. 2020 Oct 18;17(18):2964-2973
pubmed: 33173417
BMC Cancer. 2022 May 11;22(1):527
pubmed: 35546232
Int J Nanomedicine. 2018 Nov 27;13:8013-8024
pubmed: 30568442
Lipids Health Dis. 2010 Sep 24;9:106
pubmed: 20868498
Molecules. 2014 Sep 01;19(9):13498-508
pubmed: 25255752
Food Sci Nutr. 2021 Jun 01;9(7):3777-3805
pubmed: 34262737
Molecules. 2022 Jun 24;27(13):
pubmed: 35807321
Bioinorg Chem Appl. 2019 Jul 1;2019:4649506
pubmed: 31354799
Bioorg Chem. 2021 Apr;109:104731
pubmed: 33639361
Front Pharmacol. 2019 Oct 04;10:1153
pubmed: 31636564
Biomed Pharmacother. 2022 Jun;150:113008
pubmed: 35489282
Biomed Pharmacother. 2022 May;149:112868
pubmed: 35378500
Sci Rep. 2022 Feb 14;12(1):2421
pubmed: 35165346
Biomolecules. 2021 Jan 12;11(1):
pubmed: 33445558
J Nutr Biochem. 2021 Aug;94:108623
pubmed: 33705948
Afr J Tradit Complement Altern Med. 2011;8(1):1-10
pubmed: 22238476
Biomed Pharmacother. 2016 Dec;84:10-21
pubmed: 27621034
Am J Cancer Res. 2022 Jul 15;12(7):3437-3454
pubmed: 35968326