Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease.
Animals
Humans
Infant, Newborn
Mice
Carrier Proteins
/ metabolism
Cilia
/ pathology
Kidney
/ metabolism
Mutation
NIMA-Related Kinases
/ genetics
Polycystic Kidney Diseases
/ genetics
Polycystic Kidney, Autosomal Dominant
/ pathology
Protein Serine-Threonine Kinases
/ genetics
Serine
/ genetics
TRPP Cation Channels
/ genetics
NEK8
ciliopathy
kinase
polycystic kidney disease
Journal
Kidney international
ISSN: 1523-1755
Titre abrégé: Kidney Int
Pays: United States
ID NLM: 0323470
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
29
07
2022
revised:
22
07
2023
accepted:
28
07
2023
pmc-release:
01
11
2024
medline:
7
3
2024
pubmed:
21
8
2023
entrez:
20
8
2023
Statut:
ppublish
Résumé
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Identifiants
pubmed: 37598857
pii: S0085-2538(23)00559-8
doi: 10.1016/j.kint.2023.07.021
pmc: PMC10592035
mid: NIHMS1927526
pii:
doi:
Substances chimiques
ANKS6 protein, mouse
0
Carrier Proteins
0
NEK8 protein, human
EC 2.7.11.1
NIMA-Related Kinases
EC 2.7.11.1
Protein Serine-Threonine Kinases
EC 2.7.11.1
Serine
452VLY9402
TRPP Cation Channels
0
Nek8 protein, mouse
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
995-1007Subventions
Organisme : Medical Research Council
ID : MC_EX_MR/M009203/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M009203/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK059597
Pays : United States
Organisme : Medical Research Council
ID : MR/Y007808/1
Pays : United Kingdom
Organisme : NIGMS NIH HHS
ID : R35 GM142512
Pays : United States
Organisme : Medical Research Council
ID : MR/V028723/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_14089
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK058816
Pays : United States
Investigateurs
John C Ambrose
(JC)
Prabhu Arumugam
(P)
Roel Bevers
(R)
Marta Bleda
(M)
Freya Boardman-Pretty
(F)
Christopher R Boustred
(CR)
Helen Brittain
(H)
Mark J Caulfield
(MJ)
Georgia C Chan
(GC)
Greg Elgar
(G)
Tom Fowler
(T)
Adam Giess
(A)
Angela Hamblin
(A)
Shirley Henderson
(S)
Tim J P Hubbard
(TJP)
Rob Jackson
(R)
Louise J Jones
(LJ)
Dalia Kasperaviciute
(D)
Melis Kayikci
(M)
Athanasios Kousathanas
(A)
Lea Lahnstein
(L)
Sarah E A Leigh
(SEA)
Ivonne U S Leong
(IUS)
Javier F Lopez
(JF)
Fiona Maleady-Crowe
(F)
Meriel McEntagart
(M)
Federico Minneci
(F)
Loukas Moutsianas
(L)
Michael Mueller
(M)
Nirupa Murugaesu
(N)
Anna C Need
(AC)
Peter O'Donovan
(P)
Chris A Odhams
(CA)
Christine Patch
(C)
Mariana Buongermino Pereira
(MB)
Daniel Perez-Gil
(D)
John Pullinger
(J)
Tahrima Rahim
(T)
Augusto Rendon
(A)
Tim Rogers
(T)
Kevin Savage
(K)
Kushmita Sawant
(K)
Richard H Scott
(RH)
Afshan Siddiq
(A)
Alexander Sieghart
(A)
Samuel C Smith
(SC)
Alona Sosinsky
(A)
Alexander Stuckey
(A)
Mélanie Tanguy
(M)
Ana Lisa Taylor Tavares
(AL)
Ellen R A Thomas
(ERA)
Simon R Thompson
(SR)
Arianna Tucci
(A)
Matthew J Welland
(MJ)
Eleanor Williams
(E)
Katarzyna Witkowska
(K)
Suzanne M Wood
(SM)
Informations de copyright
Copyright © 2023 International Society of Nephrology. All rights reserved.
Références
Lancet. 2007 Apr 14;369(9569):1287-1301
pubmed: 17434405
N Engl J Med. 2021 Nov 11;385(20):1868-1880
pubmed: 34758253
J Am Soc Nephrol. 2008 Mar;19(3):469-76
pubmed: 18235101
Kidney Int. 2021 Feb;99(2):405-409
pubmed: 33129895
Am J Hum Genet. 2022 Aug 4;109(8):1484-1499
pubmed: 35896117
Am J Hum Genet. 2022 Jan 6;109(1):136-156
pubmed: 34890546
Hum Mol Genet. 2013 Jun 1;22(11):2177-85
pubmed: 23418306
Hum Genomics. 2010 Aug;4(6):406-10
pubmed: 20846930
J Biol Chem. 2005 Jan 14;280(2):1186-92
pubmed: 15533933
J Am Soc Nephrol. 2019 Nov;30(11):2091-2102
pubmed: 31395617
Pediatr Nephrol. 2011 Jul;26(7):1039-56
pubmed: 21210154
Nephrol Dial Transplant. 2022 Mar 25;37(4):687-696
pubmed: 33532864
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
Nat Commun. 2015 Jan 20;6:6023
pubmed: 25599650
Sci Rep. 2019 Mar 11;9(1):4141
pubmed: 30858458
Pediatr Nephrol. 2015 Jan;30(1):15-30
pubmed: 24584572
Sci Adv. 2021 Jun 23;7(26):
pubmed: 34162535
Hum Mutat. 2019 Aug;40(8):1030-1038
pubmed: 31116477
Mol Syndromol. 2021 Jun;12(3):179-185
pubmed: 34177435
J Clin Invest. 2017 May 1;127(5):1772-1785
pubmed: 28375157
N Engl J Med. 2011 Apr 21;364(16):1533-43
pubmed: 21506742
PLoS Genet. 2016 Mar 11;12(3):e1005894
pubmed: 26967905
J Biol Chem. 2001 Dec 21;276(51):47759-62
pubmed: 11673449
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444
pubmed: 34791371
J Biol Chem. 2002 May 3;277(18):16229-40
pubmed: 11864968
Am J Hum Genet. 2018 May 3;102(5):832-844
pubmed: 29706351
PLoS One. 2020 Jun 23;15(6):e0235071
pubmed: 32574212
Am J Hum Genet. 2016 Jun 2;98(6):1193-1207
pubmed: 27259053
J Am Soc Nephrol. 2008 Mar;19(3):587-92
pubmed: 18199800
Mol Cell. 2013 Aug 22;51(4):423-39
pubmed: 23973373
Am J Med Genet A. 2016 Mar;170(3):750-3
pubmed: 26697755
Nature. 2010 Dec 16;468(7326):968-72
pubmed: 21107320
Nat Protoc. 2009;4(10):1513-21
pubmed: 19798084
Genome Res. 2002 Jun;12(6):996-1006
pubmed: 12045153
J Am Soc Nephrol. 2013 Jan;24(1):100-12
pubmed: 23274954
Bioinformatics. 2013 Nov 1;29(21):2722-8
pubmed: 23986568
Bioinformatics. 2002 Jul;18(7):985-95
pubmed: 12117797
Cell. 2012 Aug 3;150(3):533-48
pubmed: 22863007
Hum Mutat. 2015 Oct;36(10):928-30
pubmed: 26220891
Nephron. 2023;147(3-4):229-233
pubmed: 36215968
Nephrol Dial Transplant. 2014 Oct;29(10):1910-8
pubmed: 24737444
Genome Med. 2021 Feb 22;13(1):31
pubmed: 33618777
J Biol Chem. 1998 Mar 6;273(10):5858-68
pubmed: 9488723
Nat Genet. 2013 Aug;45(8):951-6
pubmed: 23793029