Morphological phenotyping after mouse whole embryo culture.
culture
embryo
mouse
neural tube
neurulation
phenotype
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2023
2023
Historique:
received:
16
05
2023
accepted:
24
07
2023
medline:
21
8
2023
pubmed:
21
8
2023
entrez:
21
8
2023
Statut:
epublish
Résumé
Morphological phenotyping of the mouse embryo is described at neurulation stages, primarily as a guide to evaluating the outcome of whole embryo cultures between embryonic days 8.5 and 9.5. During this period, neural tube closure is initiated and progresses to completion in the cranial region. Spinal closure is still underway at the end of the culture period. The focus of this article is particularly on phenotyping that can be performed at the bench, using a stereomicroscope. This involves assessment of embryonic health, through observation and scoring of yolk sac blood circulation, measurement of developmental stage by somite counting, and determination of crown-rump length as a measure of growth. Axial rotation ("turning") can also be assessed using a simple scoring system. Neural tube closure assessment includes: 1) determining whether closure has been initiated at the Closure 1 site; 2) evaluating the complex steps of cranial neurulation including initiation at Closure sites 2 and 3, and completion of closure at the anterior and hindbrain neuropores; 3) assessment of spinal closure by measurement of posterior neuropore length. Interpretation of defects in neural tube closure requires an appreciation of, first, the stages that particular events are expected to be completed and, second, the correspondence between embryonic landmarks, for example, somite position, and the resulting adult axial levels. Detailed embryonic phenotyping, as described in this article, when combined with the versatile method of whole embryo culture, can form the basis for a wide range of experimental studies in early mouse neural development.
Identifiants
pubmed: 37601098
doi: 10.3389/fcell.2023.1223849
pii: 1223849
pmc: PMC10435082
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
1223849Informations de copyright
Copyright © 2023 Copp, Clark and Greene.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Anat. 1989 Apr;163:123-34
pubmed: 2606767
Nature. 1998 Sep 10;395(6698):177-81
pubmed: 9744276
J Vis Exp. 2014 Aug 03;(90):e51969
pubmed: 25145996
Dev Biol. 1978 Aug;65(2):396-403
pubmed: 680369
Dis Model Mech. 2014 Oct;7(10):1153-63
pubmed: 25128525
Nature. 1997 Oct 30;389(6654):963-6
pubmed: 9353118
Anal Biochem. 1985 Oct;150(1):76-85
pubmed: 3843705
Anat Embryol (Berl). 1996 Jul;194(1):65-73
pubmed: 8800424
Nature. 2021 May;593(7857):119-124
pubmed: 33731940
Anat Rec. 1989 Feb;223(2):194-203
pubmed: 2712345
Circ Res. 2003 Feb 7;92(2):133-5
pubmed: 12574139
Hum Mol Genet. 2000 Mar 1;9(4):575-81
pubmed: 10699180
Teratology. 1988 Jan;37(1):29-36
pubmed: 3347905
Neuron. 1999 Apr;22(4):667-76
pubmed: 10230788
Proc Natl Acad Sci U S A. 2021 May 11;118(19):
pubmed: 33941697
Nat Commun. 2019 Jun 6;10(1):2487
pubmed: 31171776
Cell. 1993 Jun 18;73(6):1117-24
pubmed: 7685657
Teratology. 1981 Aug;24(1):65-78
pubmed: 7302873
Methods Mol Biol. 2008;461:7-22
pubmed: 19030787
Teratology. 2002 Apr;65(4):162-70
pubmed: 11948562
Dis Model Mech. 2022 Jan 1;15(1):
pubmed: 34842271
Adv Nutr. 2021 Feb 1;12(1):212-222
pubmed: 32892218
Development. 1993 Aug;118(4):1255-66
pubmed: 8269852
Annu Rev Neurosci. 2014;37:221-42
pubmed: 25032496
Annu Rev Cell Dev Biol. 2012;28:627-53
pubmed: 22905955
Development. 2002 May;129(10):2507-17
pubmed: 11973281
Am J Med Genet. 1997 Dec 12;73(2):113-8
pubmed: 9409858
Toxicol In Vitro. 1990;4(2):149-56
pubmed: 20702276
J Embryol Exp Morphol. 1975 Feb;33(1):217-26
pubmed: 1151267
Toxicology. 1995 Sep 18;102(3):259-74
pubmed: 7482566
Development. 2007 Feb;134(4):789-99
pubmed: 17229766
Anat Embryol (Berl). 1998 Jan;197(1):1-8
pubmed: 9462855
Methods Mol Biol. 2023;2608:147-162
pubmed: 36653707
Teratology. 1990 Apr;41(4):395-404
pubmed: 2187259
Genes Dev. 1995 Dec 15;9(24):3136-48
pubmed: 8543157
Biol Rev Camb Philos Soc. 1978 Feb;53(1):81-122
pubmed: 352414
Biochem Soc Trans. 1985 Feb;13(1):82-3
pubmed: 3996745
Nat Rev Dis Primers. 2015 Apr 30;1:15007
pubmed: 27189655
J Embryol Exp Morphol. 1985 Aug;88:39-54
pubmed: 4078540
Development. 2007 Sep;134(17):3203-11
pubmed: 17693602
J Med Genet. 1994 May;31(5):383-7
pubmed: 8064816
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5177-E5186
pubmed: 28607062
Birth Defects Res A Clin Mol Teratol. 2009 Apr;85(4):322-30
pubmed: 19180568
Birth Defects Res B Dev Reprod Toxicol. 2010 Dec;89(6):485-92
pubmed: 21058394
Curr Opin Cell Biol. 2010 Oct;22(5):589-96
pubmed: 20739170
Dev Biol. 1994 Sep;165(1):20-9
pubmed: 8088438
Dev Biol. 2018 Mar 15;435(2):130-137
pubmed: 29397878
J Matern Fetal Neonatal Med. 2017 Oct;30(19):2263-2275
pubmed: 27718783
J Reprod Fertil. 1973 Oct;35(1):135-8
pubmed: 4742154
Birth Defects Res. 2019 Oct 1;111(16):1165-1177
pubmed: 31237114
Teratology. 1991 Aug;44(2):225-33
pubmed: 1925982
J Med Genet. 1989 Mar;26(3):160-6
pubmed: 2709393
Anat Embryol (Berl). 1992;185(2):169-74
pubmed: 1536449