Random projection forest initialization for graph convolutional networks.

Deep learning Graph convolutional network (GCN) Graph neural network (GNN) Random Projection Forest Initialization for Graph Convolutional Networks Random projection forests

Journal

MethodsX
ISSN: 2215-0161
Titre abrégé: MethodsX
Pays: Netherlands
ID NLM: 101639829

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 07 11 2022
accepted: 03 08 2023
medline: 21 8 2023
pubmed: 21 8 2023
entrez: 21 8 2023
Statut: epublish

Résumé

Graph convolutional networks (GCNs) were a great step towards extending deep learning to graphs. GCN uses the graph

Identifiants

pubmed: 37601292
doi: 10.1016/j.mex.2023.102315
pii: S2215-0161(23)00312-6
pmc: PMC10433121
doi:

Types de publication

Journal Article

Langues

eng

Pagination

102315

Informations de copyright

© 2023 The Author(s).

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Nonlinear Biomed Phys. 2007 Jul 05;1(1):3
pubmed: 17908336
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24
pubmed: 32217482
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):6923-6939
pubmed: 33872143

Auteurs

Mashaan Alshammari (M)

Independent Researcher, Riyadh, Saudi Arabia.

John Stavrakakis (J)

School of Computer Science, The University of Sydney, NSW 2006, Australia.

Adel F Ahmed (AF)

Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Masahiro Takatsuka (M)

School of Computer Science, The University of Sydney, NSW 2006, Australia.

Classifications MeSH