Spatiotemporal dynamics of high and low nucleic acid-content bacterial communities in Chinese coastal seawater: assembly process, co-occurrence relationship and the ecological functions.

co-occurrence relationships ecological functions ecological processes high and low nucleic acid-content bacteria spatiotemporal dynamics

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2023
Historique:
received: 09 05 2023
accepted: 20 07 2023
medline: 21 8 2023
pubmed: 21 8 2023
entrez: 21 8 2023
Statut: epublish

Résumé

Studies of high nucleic acid-content (HNA) and low nucleic acid-content (LNA) bacterial communities are updating our view of their distributions and taxonomic composition. However, there are still large gaps in our knowledge of the composition, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities. Here, using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities in the samples collected in summer and winter in Chinese coastal seas. The communities of HNA and LNA bacteria had clear spatiotemporal patterns and LNA bacteria was phylogenetically less diverse than HNA bacteria in both seasons. The distribution of HNA and LNA bacteria were significantly affected by the environmental factors and a significant seasonal-consistent distance-decay patterns were found in HNA and LNA bacteria. Furthermore, a quantitative assessment of ecological processes revealed that dispersal limitation, homogeneous selection exerted important roles in the community assembly of HNA and LNA bacteria. More importantly, we observed seasonality in the co-occurrence relationships: closer inter-taxa connections of HNA bacterial communities in winter than in summer and the opposite is true in the LNA bacterial communities. Some ecological functions, such as: phototrophy, photoautotrophy, oxygenic photoautotrophy, were different between HNA and LNA bacteria. These results provide a better understanding of spatiotemporal patterns, processes, and the ecological functions of HNA and LNA bacterial communities in Chinese coastal seawater.

Identifiants

pubmed: 37601370
doi: 10.3389/fmicb.2023.1219655
pmc: PMC10433394
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1219655

Informations de copyright

Copyright © 2023 Hu, Zheng, Zhang, Bartlam and Wang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Nat Rev Microbiol. 2012 Jul 16;10(8):538-50
pubmed: 22796884
Microb Ecol. 2019 Aug;78(2):428-445
pubmed: 30706112
Microbiologyopen. 2019 Oct;8(10):e891
pubmed: 31218846
Nat Methods. 2013 Oct;10(10):996-8
pubmed: 23955772
Microbiome. 2020 Jun 4;8(1):82
pubmed: 32498714
Appl Environ Microbiol. 2001 Nov;67(11):5210-8
pubmed: 11679347
ISME J. 2015 Sep;9(9):2068-77
pubmed: 25748371
Water Res. 2021 Sep 1;202:117428
pubmed: 34303166
Appl Environ Microbiol. 1999 Oct;65(10):4475-83
pubmed: 10508078
Nature. 2006 Jul 20;442(7100):259-64
pubmed: 16855581
Environ Microbiol. 2017 Jan;19(1):287-300
pubmed: 27871146
Sci Total Environ. 2021 Mar 10;759:143799
pubmed: 33333332
Microbiome. 2019 Nov 14;7(1):148
pubmed: 31727140
Front Microbiol. 2014 May 20;5:219
pubmed: 24904535
Microbiome. 2020 Apr 20;8(1):55
pubmed: 32312331
J Microbiol. 2014 Feb;52(2):111-9
pubmed: 24500475
Appl Microbiol Biotechnol. 2015 Nov;99(21):9255-66
pubmed: 26156239
Appl Environ Microbiol. 1995 Feb;61(2):708-17
pubmed: 16534938
Sci Total Environ. 2019 Mar 25;658:868-878
pubmed: 30678021
Microbiol Mol Biol Rev. 2011 Jun;75(2):361-422
pubmed: 21646433
ISME J. 2020 Jun;14(6):1463-1478
pubmed: 32132664
Microb Ecol. 2003 Mar;45(3):203-17
pubmed: 12632213
Ecotoxicol Environ Saf. 2019 Nov 15;183:109601
pubmed: 31509931
Appl Environ Microbiol. 1994 Dec;60(12):4345-50
pubmed: 7811075
Nat Commun. 2015 Oct 05;6:8444
pubmed: 26436640
ISME J. 2018 May;12(5):1344-1359
pubmed: 29416124
ISME J. 2022 Jan;16(1):178-189
pubmed: 34285363
Environ Microbiol Rep. 2012 Feb;4(1):1-9
pubmed: 23757223
ISME J. 2012 Sep;6(9):1653-64
pubmed: 22456445
Nat Commun. 2020 Sep 18;11(1):4717
pubmed: 32948774
Sci Rep. 2020 Feb 12;10(1):2455
pubmed: 32051469
Nature. 2005 Nov 3;438(7064):82-5
pubmed: 16267553
Appl Environ Microbiol. 2001 Apr;67(4):1775-82
pubmed: 11282632
Nature. 2002 Dec 19-26;420(6917):806-10
pubmed: 12490947
ISME J. 2011 Jul;5(7):1086-94
pubmed: 21270841
ISME J. 2009 Aug;3(8):889-902
pubmed: 19421234
Environ Microbiol. 2018 Feb;20(2):462-476
pubmed: 28881067
Appl Environ Microbiol. 2005 Oct;71(10):5828-36
pubmed: 16204494
Science. 2016 Sep 16;353(6305):1272-7
pubmed: 27634532
Environ Microbiol. 2007 Aug;9(8):2050-66
pubmed: 17635549
Syst Appl Microbiol. 2011 Sep;34(6):470-5
pubmed: 21596506
Water Res. 2010 Sep;44(17):4826-37
pubmed: 20688348
ISME J. 2012 Feb;6(2):298-308
pubmed: 21850055
Sci Rep. 2020 Oct 2;10(1):16399
pubmed: 33009479
Nat Rev Microbiol. 2012 May 14;10(7):497-506
pubmed: 22580365
ISME J. 2020 Mar;14(3):740-756
pubmed: 31827245
Nat Methods. 2013 Jan;10(1):57-9
pubmed: 23202435
Appl Environ Microbiol. 2005 Dec;71(12):7737-49
pubmed: 16332746
PLoS One. 2016 Apr 15;11(4):e0153678
pubmed: 27082986
Nature. 2009 May 14;459(7244):193-9
pubmed: 19444205
Microb Ecol. 2000 Aug;40(2):148-158
pubmed: 11029083
ISME J. 2013 May;7(5):937-48
pubmed: 23254515
Mol Ecol. 2014 Feb;23(4):954-64
pubmed: 24460915
ISME J. 2018 Feb;12(2):485-494
pubmed: 29125596
Front Microbiol. 2022 Jun 15;13:900669
pubmed: 35783413
Sci Total Environ. 2020 Feb 10;703:134884
pubmed: 31767325
Environ Microbiol. 2018 Jun;20(6):2231-2240
pubmed: 29727053
ISME J. 2018 Sep;12(9):2198-2210
pubmed: 29880912
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Science. 2015 May 22;348(6237):1261359
pubmed: 25999513
Environ Microbiol. 2017 Dec;19(12):4993-5009
pubmed: 28967165
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12112-6
pubmed: 16099836
ISME J. 2015 Feb;9(2):516-26
pubmed: 25238398
Front Microbiol. 2017 Oct 12;8:1912
pubmed: 29075237
Microbiol Mol Biol Rev. 2017 Oct 11;81(4):
pubmed: 29021219
ISME J. 2013 Nov;7(11):2069-79
pubmed: 23739053
Bioinformatics. 2011 Aug 15;27(16):2194-200
pubmed: 21700674
Environ Microbiol. 2012 Jun;14(6):1390-402
pubmed: 22390635

Auteurs

Wei Hu (W)

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.

Ningning Zheng (N)

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.

Yadi Zhang (Y)

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.

Mark Bartlam (M)

State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.

Yingying Wang (Y)

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.

Classifications MeSH