Phylogenetic investigation of Gammaproteobacteria proteins involved in exogenous long-chain fatty acid acquisition and assimilation.

Bacterial phylogeny Exogenous fatty acids FadL Fatty acid metabolism Gammaproteobacteria Molecular docking

Journal

Biochemistry and biophysics reports
ISSN: 2405-5808
Titre abrégé: Biochem Biophys Rep
Pays: Netherlands
ID NLM: 101660999

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 03 02 2023
revised: 12 06 2023
accepted: 21 06 2023
medline: 21 8 2023
pubmed: 21 8 2023
entrez: 21 8 2023
Statut: epublish

Résumé

The incorporation of exogenous fatty acids into the cell membrane yields structural modifications that directly influence membrane phospholipid composition and indirectly contribute to virulence. FadL and FadD are responsible for importing and activating exogenous fatty acids, while acyltransferases (PlsB, PlsC, PlsX, PlsY) incorporate fatty acids into the cell membrane. Many Gammaproteobacteria species possess multiple homologs of these proteins involved in exogenous fatty acid metabolism, suggesting the evolutionary acquisition and maintenance of this transport pathway. This study developed phylogenetic trees based on amino acid and nucleotide sequences of homologs of FadL, FadD, PlsB, PlsC, PlsX, and PlsY via Mr. Bayes and RAxML algorithms. We also explored the operon arrangement of genes encoding for FadL. Additionally, FadL homologs were modeled via SWISS-MODEL, validated and refined by SAVES, Galaxy Refine, and GROMACS, and docked with fatty acids via AutoDock Vina. Resulting affinities were analyzed by 2-way ANOVA test and Tukey's post-hoc test. Our phylogenetic trees revealed grouping based on operon structure, original homolog blasted from, and order of the homolog, suggesting a more ancestral origin of the multiple homolog phenomena. Our molecular docking simulations indicated a similar binding pattern for the fatty acids between the different FadL homologs. Our study is the first to illustrate the phylogeny of these proteins and to investigate the binding of various FadL homologs across orders with fatty acids. This study helps unravel the mystery surrounding these proteins and presents topics for future research.

Sections du résumé

Background UNASSIGNED
The incorporation of exogenous fatty acids into the cell membrane yields structural modifications that directly influence membrane phospholipid composition and indirectly contribute to virulence. FadL and FadD are responsible for importing and activating exogenous fatty acids, while acyltransferases (PlsB, PlsC, PlsX, PlsY) incorporate fatty acids into the cell membrane. Many Gammaproteobacteria species possess multiple homologs of these proteins involved in exogenous fatty acid metabolism, suggesting the evolutionary acquisition and maintenance of this transport pathway.
Methods UNASSIGNED
This study developed phylogenetic trees based on amino acid and nucleotide sequences of homologs of FadL, FadD, PlsB, PlsC, PlsX, and PlsY via Mr. Bayes and RAxML algorithms. We also explored the operon arrangement of genes encoding for FadL. Additionally, FadL homologs were modeled via SWISS-MODEL, validated and refined by SAVES, Galaxy Refine, and GROMACS, and docked with fatty acids via AutoDock Vina. Resulting affinities were analyzed by 2-way ANOVA test and Tukey's post-hoc test.
Results UNASSIGNED
Our phylogenetic trees revealed grouping based on operon structure, original homolog blasted from, and order of the homolog, suggesting a more ancestral origin of the multiple homolog phenomena. Our molecular docking simulations indicated a similar binding pattern for the fatty acids between the different FadL homologs.
General significance UNASSIGNED
Our study is the first to illustrate the phylogeny of these proteins and to investigate the binding of various FadL homologs across orders with fatty acids. This study helps unravel the mystery surrounding these proteins and presents topics for future research.

Identifiants

pubmed: 37601446
doi: 10.1016/j.bbrep.2023.101504
pii: S2405-5808(23)00085-7
pmc: PMC10439403
doi:

Types de publication

Journal Article

Langues

eng

Pagination

101504

Informations de copyright

© 2023 The Authors.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
IDCases. 2020 Apr 17;20:e00753
pubmed: 32346513
Genet Mol Biol. 2020 Feb 17;43(1):e20180314
pubmed: 31479095
J Biomol NMR. 1996 Dec;8(4):477-86
pubmed: 9008363
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Mar 1;68(Pt 3):265-8
pubmed: 22442218
J Comput Chem. 2005 Dec;26(16):1701-18
pubmed: 16211538
Nat Rev Microbiol. 2009 Oct;7(10):693-702
pubmed: 19756008
J Chem Theory Comput. 2008 Mar;4(3):435-47
pubmed: 26620784
Microbiologyopen. 2019 Feb;8(2):e00635
pubmed: 29701307
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37
pubmed: 27322406
J Lipid Res. 2008 Sep;49(9):1867-74
pubmed: 18369234
Science. 1991 Jul 12;253(5016):164-70
pubmed: 1853201
Genome Biol Evol. 2021 Apr 5;13(4):
pubmed: 33677562
Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395
pubmed: 33151290
Food Microbiol. 2016 Aug;57:128-34
pubmed: 27052711
BMC Complement Med Ther. 2022 Aug 6;22(1):210
pubmed: 35932042
Microbiology (Reading). 2017 Nov;163(11):1626-1636
pubmed: 29058654
Cell Rep Methods. 2021 Jul 26;1(3):
pubmed: 34355210
J Chem Inf Model. 2021 Aug 23;61(8):3891-3898
pubmed: 34278794
Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414
pubmed: 20452953
Annu Rev Biophys Biomol Struct. 2000;29:291-325
pubmed: 10940251
Nat Protoc. 2022 Oct;17(10):2326-2353
pubmed: 35931779
Bioinformatics. 2013 Apr 1;29(7):845-54
pubmed: 23407358
Int J Syst Evol Microbiol. 2017 Feb;67(2):306-310
pubmed: 27902247
J Comput Chem. 2009 Dec;30(16):2785-91
pubmed: 19399780
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Clin Transl Med. 2012 Jun 14;1(1):10
pubmed: 23369277
mBio. 2013 May 14;4(3):e00305-13
pubmed: 23674613
Electrophoresis. 2009 Jun;30 Suppl 1:S162-73
pubmed: 19517507
Nature. 1992 Mar 5;356(6364):83-5
pubmed: 1538787
BMC Microbiol. 2018 Sep 14;18(1):117
pubmed: 30217149
Antimicrob Agents Chemother. 2010 Apr;54(4):1547-54
pubmed: 20124004
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Microbiologyopen. 2021 Oct;10(5):e1237
pubmed: 34713610
J Fish Dis. 2023 Jan;46(1):31-45
pubmed: 36088584
Physiother Theory Pract. 2019 Feb;35(2):163-170
pubmed: 29482428
Science. 2004 Jun 4;304(5676):1506-9
pubmed: 15178802
Proteins. 2011 Sep;79(9):2725-34
pubmed: 21755541
Appl Environ Microbiol. 2017 Oct 31;83(22):
pubmed: 28864654
Microb Drug Resist. 2021 Feb;27(2):179-189
pubmed: 32552456
Mar Life Sci Technol. 2020;2(3):231-245
pubmed: 32419972
J Bacteriol. 2010 May;192(9):2305-14
pubmed: 20207755
Yi Chuan. 2021 Apr 20;43(4):350-361
pubmed: 33972209
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
Pathogens. 2020 Dec 16;9(12):
pubmed: 33339261
Int J Biol Macromol. 2022 May 31;208:11-19
pubmed: 35276295
Front Microbiol. 2014 Mar 07;5:91
pubmed: 24653717
Microorganisms. 2021 Jan 18;9(1):
pubmed: 33477474
J Fish Dis. 2017 Oct;40(10):1395-1403
pubmed: 28383126
Surg Infect (Larchmt). 2021 Nov;22(9):940-947
pubmed: 33970041
Front Microbiol. 2019 Nov 26;10:2742
pubmed: 32038507
J Cell Biochem. 2022 May;123(5):935-946
pubmed: 35315127
Bioinformatics. 2020 Mar 1;36(6):1765-1771
pubmed: 31697312
Virulence. 2015;6(5):417-8
pubmed: 26055576
Proteins. 2010 Dec;78(16):3428-36
pubmed: 20872556
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303
pubmed: 29788355
Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81
pubmed: 25883148
Bioinformatics. 2003 Aug 12;19(12):1572-4
pubmed: 12912839
Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319
pubmed: 27899672
Prog Lipid Res. 2013 Jul;52(3):249-76
pubmed: 23500459
FEMS Microbiol Lett. 2006 Dec;265(1):1-10
pubmed: 17107417
J Chem Phys. 2020 Oct 7;153(13):134110
pubmed: 33032406
Mol Med Today. 1995 Sep;1(6):270-7
pubmed: 9415161
J Cell Biochem. 2022 Jun;123(6):1091-1102
pubmed: 35486518
Nature. 2009 Mar 19;458(7236):367-70
pubmed: 19182779
Proteins. 2012 Aug;80(8):1974-86
pubmed: 22488760
Protein Sci. 2000 Sep;9(9):1753-73
pubmed: 11045621
Biomolecules. 2022 Sep 09;12(9):
pubmed: 36139109
Int J Syst Evol Microbiol. 2020 Sep;70(9):4927-4934
pubmed: 32735535
PLoS Comput Biol. 2010 Apr 01;6(4):e1000732
pubmed: 20369015
Methods Mol Biol. 2021;2199:289-313
pubmed: 33125657
Clin Microbiol Rev. 2013 Jul;26(3):631-55
pubmed: 23824375
Protein Sci. 1993 Sep;2(9):1511-9
pubmed: 8401235
Cell Biochem Funct. 2022 Jul;40(5):481-490
pubmed: 35604288
BMC Microbiol. 2020 Oct 12;20(1):305
pubmed: 33046008
Microbiol Resour Announc. 2020 Jan 23;9(4):
pubmed: 31974151
Molecules. 2018 Oct 09;23(10):
pubmed: 30304860
BMC Microbiol. 2007 Jul 24;7:69
pubmed: 17645809

Auteurs

Saksham Saksena (S)

College of Arts and Sciences, Vanderbilt University, 2201 West End Ave., Nashville, TN, 37235, USA.

Kwame Forbes (K)

College of Science and Mathematics, The University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, USVI, 00802-9990, USA.

Nipun Rajan (N)

East Hamilton High School, 2015 Ooltewah Ringgold Road, Ootlewah, TN, 37363, USA.

David Giles (D)

Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN, 37403, USA.

Classifications MeSH