Hypoxia induces a glycolytic complex in intestinal epithelial cells independent of HIF-1-driven glycolytic gene expression.
HIF
glycolysis
hypoxia
metabolism
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
29 08 2023
29 08 2023
Historique:
pmc-release:
21
02
2024
medline:
23
8
2023
pubmed:
21
8
2023
entrez:
21
8
2023
Statut:
ppublish
Résumé
The metabolic adaptation of eukaryotic cells to hypoxia involves increasing dependence upon glycolytic adenosine triphosphate (ATP) production, an event with consequences for cellular bioenergetics and cell fate. This response is regulated at the transcriptional level by the hypoxia-inducible factor-1(HIF-1)-dependent transcriptional upregulation of glycolytic enzymes (GEs) and glucose transporters. However, this transcriptional upregulation alone is unlikely to account fully for the levels of glycolytic ATP produced during hypoxia. Here, we investigated additional mechanisms regulating glycolysis in hypoxia. We observed that intestinal epithelial cells treated with inhibitors of transcription or translation and human platelets (which lack nuclei and the capacity for canonical transcriptional activity) maintained the capacity for hypoxia-induced glycolysis, a finding which suggests the involvement of a nontranscriptional component to the hypoxia-induced metabolic switch to a highly glycolytic phenotype. In our investigations into potential nontranscriptional mechanisms for glycolytic induction, we identified a hypoxia-sensitive formation of complexes comprising GEs and glucose transporters in intestinal epithelial cells. Surprisingly, the formation of such glycolytic complexes occurs independent of HIF-1-driven transcription. Finally, we provide evidence for the presence of HIF-1α in cytosolic fractions of hypoxic cells which physically interacts with the glucose transporter GLUT1 and the GEs in a hypoxia-sensitive manner. In conclusion, we provide insights into the nontranscriptional regulation of hypoxia-induced glycolysis in intestinal epithelial cells.
Identifiants
pubmed: 37603756
doi: 10.1073/pnas.2208117120
pmc: PMC10469334
doi:
Substances chimiques
Adenosine Triphosphate
8L70Q75FXE
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2208117120Références
Br J Anaesth. 1969 Mar;41(3):245-50
pubmed: 5776669
Blood. 2008 Nov 1;112(9):3900-6
pubmed: 18698006
Mol Cell Biol. 2001 May;21(10):3436-44
pubmed: 11313469
Annu Rev Plant Biol. 2013;64:723-46
pubmed: 23330793
J Theor Biol. 1985 Oct 21;116(4):509-26
pubmed: 2999516
Cells. 2019 Apr 26;8(5):
pubmed: 31035491
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2402-7
pubmed: 15701694
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
Cell Metab. 2006 Mar;3(3):187-97
pubmed: 16517406
EBioMedicine. 2019 Mar;41:320-332
pubmed: 30745168
Cell Rep. 2014 Aug 21;8(4):1077-92
pubmed: 25131208
J Physiol. 2021 Jan;599(1):23-37
pubmed: 33006160
Cell Metab. 2006 Mar;3(3):177-85
pubmed: 16517405
Biophys J. 2021 Apr 6;120(7):1170-1186
pubmed: 32853565
EMBO Rep. 2020 Aug 5;21(8):e50774
pubmed: 33438812
J Eukaryot Microbiol. 2022 Nov;69(6):e12897
pubmed: 35175680
Proteome Sci. 2022 Jun 9;20(1):10
pubmed: 35681168
Cancer Metab. 2019 Dec 27;7:11
pubmed: 31890203
Cell Metab. 2016 Jan 12;23(1):27-47
pubmed: 26771115
Cancer Res. 2002 Feb 1;62(3):688-95
pubmed: 11830521
Cell Biol Int. 2007 Oct;31(10):1122-30
pubmed: 17481926
Research (Wash D C). 2018 Nov 21;2018:1539325
pubmed: 31549022
Mol Cell Proteomics. 2014 Sep;13(9):2246-59
pubmed: 24866124
Biochem Biophys Res Commun. 2003 Nov 14;311(2):294-9
pubmed: 14592412
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2208117120
pubmed: 37603756
J Biol Chem. 2017 Jun 2;292(22):9191-9203
pubmed: 28424264
Elife. 2019 Sep 10;8:
pubmed: 31500697
Physiol Rev. 2018 Jan 1;98(1):3-58
pubmed: 29167330
Cell Rep. 2017 Jul 25;20(4):895-908
pubmed: 28746874
Sci Signal. 2013 Feb 12;6(262):ra10
pubmed: 23405012
FEBS Lett. 1977 Aug 15;80(2):360-4
pubmed: 142663
Nat Protoc. 2007;2(8):1896-906
pubmed: 17703201
Anesthesiology. 2020 Apr;132(4):763-780
pubmed: 31794514
Mol Cell. 2022 Feb 3;82(3):542-554.e6
pubmed: 35081364
Nature. 2015 Sep 17;525(7569):339-44
pubmed: 26344197
Eukaryot Cell. 2013 Aug;12(8):1106-19
pubmed: 23748432
Front Cell Infect Microbiol. 2020 Jan 31;10:25
pubmed: 32083023
Nat Protoc. 2016 Dec;11(12):2301-2319
pubmed: 27809316
Biology (Basel). 2014 Apr 16;3(2):320-32
pubmed: 24833512
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
J Cell Physiol. 1996 May;167(2):238-50
pubmed: 8613464
Nat Biotechnol. 2014 Oct;32(10):1011-8
pubmed: 25262299
Front Physiol. 2022 Jun 08;13:889091
pubmed: 35755436
Nature. 2013 Jan 17;493(7432):346-55
pubmed: 23325217
Neuron. 2016 Apr 20;90(2):278-91
pubmed: 27068791
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
J Biol Chem. 1994 Sep 23;269(38):23757-63
pubmed: 8089148