Increasing landscape heterogeneity as a win-win solution to manage trade-offs in biological control of crop and woodland pests.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 08 2023
Historique:
received: 12 05 2023
accepted: 10 08 2023
medline: 23 8 2023
pubmed: 22 8 2023
entrez: 21 8 2023
Statut: epublish

Résumé

Agriculture and forestry cover more than 75% of Europe, and invertebrate pests are a costly challenge for these two economic sectors. Landscape management is increasingly promoted as a solution to enhance biological pest control, but little is known on its effects on adjacent crop fields and woodlands. This study aims to explore the effect of the proportion of woodlands and permanent grasslands as well as crop diversity on biological pest control simultaneously in cereals fields and woodland patches, in south-western France. We used different types of sentinel prey as well as bird and carabid community metrics to assess biological pest control potential in these two ecosystems. We first show that land cover variables influence biological pest control both in cereal fields and woodland patches, but have antagonistic effects in the two ecosystems. Although results vary according to the biological control indicator considered, we show that increasing landscape heterogeneity represents a valuable solution to manage trade-offs and promote higher average predation rates across forests and cereal fields. Our study therefore calls for more integrative studies to identify landscape management strategies that enable nature-based solutions across ecosystems.

Identifiants

pubmed: 37604831
doi: 10.1038/s41598-023-40473-2
pii: 10.1038/s41598-023-40473-2
pmc: PMC10442452
doi:

Substances chimiques

Environmental Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13573

Informations de copyright

© 2023. Springer Nature Limited.

Références

Duflot, R. et al. Farming intensity indirectly reduces crop yield through negative effects on agrobiodiversity and key ecological functions. Agric. Ecosyst. Environ. 326, 107810. https://doi.org/10.1016/j.agee.2021.107810 (2022).
doi: 10.1016/j.agee.2021.107810
Simler-Williamson, A. B., Rizzo, D. M. & Cobb, R. C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 381–403. https://doi.org/10.1146/annurev-ecolsys-110218-024934 (2019).
doi: 10.1146/annurev-ecolsys-110218-024934
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).
doi: 10.1016/j.baae.2009.12.001
Meissle, M. et al. Pests, pesticide use and alternative options in European maize production: Current status and future prospects. J. Appl. Entomol. 134, 357–375. https://doi.org/10.1111/j.1439-0418.2009.01491.x (2010).
doi: 10.1111/j.1439-0418.2009.01491.x
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, 1–14 (2019).
doi: 10.1126/sciadv.aax0121
Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).
doi: 10.1098/rstb.2019.0120
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).
doi: 10.1111/j.1469-185X.2011.00216.x pubmed: 22272640
Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166. https://doi.org/10.1016/j.tree.2018.11.002 (2019).
doi: 10.1016/j.tree.2018.11.002 pubmed: 30509848
Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. In Advances in Ecological Research Vol. 55 (eds Dumbrell, A. J. et al.) 43–97 (Academic Press, 2016). https://doi.org/10.1016/bs.aecr.2016.08.005 .
doi: 10.1016/bs.aecr.2016.08.005
Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. 110, 11039–11043. https://doi.org/10.1073/pnas.1305618110 (2013).
doi: 10.1073/pnas.1305618110 pubmed: 23776226 pmcid: 3704006
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).
doi: 10.1016/j.biocon.2019.01.020
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).
doi: 10.1371/journal.pone.0185809 pubmed: 29045418 pmcid: 5646769
Boesing, A. L., Nichols, E. & Metzger, J. P. Effects of landscape structure on avian-mediated insect pest control services: A review. Landsc. Ecol. 32, 931–944. https://doi.org/10.1007/s10980-017-0503-1 (2017).
doi: 10.1007/s10980-017-0503-1
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity: Pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932. https://doi.org/10.1111/j.1461-0248.2011.01642.x (2011).
doi: 10.1111/j.1461-0248.2011.01642.x pubmed: 21707902
Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204. https://doi.org/10.1016/j.agee.2016.01.039 (2016).
doi: 10.1016/j.agee.2016.01.039
Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc. Natl. Acad. Sci. USA 119, e2203385119. https://doi.org/10.1073/pnas.2203385119 (2022).
doi: 10.1073/pnas.2203385119 pubmed: 36095174 pmcid: 9499564
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. PNAS 116, 16442–16447. https://doi.org/10.1073/pnas.1906419116 (2019).
doi: 10.1073/pnas.1906419116 pubmed: 31358630 pmcid: 6697893
Schellhorn, N. A., Gagic, V. & Bommarco, R. Time will tell: Resource continuity bolsters ecosystem services. Trends Ecol. Evol. 30, 524–530. https://doi.org/10.1016/j.tree.2015.06.007 (2015).
doi: 10.1016/j.tree.2015.06.007 pubmed: 26138384
Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124. https://doi.org/10.2307/1942161 (1973).
doi: 10.2307/1942161
Schneider, G., Krauss, J., Riedinger, V., Holzschuh, A. & Steffan-Dewenter, I. Biological pest control and yields depend on spatial and temporal crop cover dynamics. J. Appl. Ecol. 52, 1283–1292 (2015).
doi: 10.1111/1365-2664.12471
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).
doi: 10.1146/annurev.ento.45.1.175 pubmed: 10761575
Rusch, A., Valantin-Morison, M., Sarthou, J.-P. & Roger-Estrade, J. Biological control of insect pests in agroecosystems. Adv. Agron. 109, 219–259. https://doi.org/10.1016/B978-0-12-385040-9.00006-2 (2010).
doi: 10.1016/B978-0-12-385040-9.00006-2
Tscharntke, T. et al. Reprint of “Conservation biological control and enemy diversity on a landscape scale” [Biol. Control 43 (2007) 294–309] q. Biol. Control 16 (2008).
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 115, E7863–E7870. https://doi.org/10.1073/pnas.1800042115 (2018).
doi: 10.1073/pnas.1800042115 pubmed: 30072434 pmcid: 6099893
Akter, S. et al. Continent-wide evidence that landscape context can mediate the effects of local habitats on in-field abundance of pests and natural enemies. Ecol. Evol. 13, e9737. https://doi.org/10.1002/ece3.9737 (2023).
doi: 10.1002/ece3.9737 pubmed: 36644696 pmcid: 9833983
Ratsimba, N., Therond, O., Parry, H., Monteil, C. & Vialatte, A. Inconsistent responses of conservation biocontrol to landscape structure: new insights from a network-based review. Ecol. Appl. https://doi.org/10.1002/eap.2456 (2022).
doi: 10.1002/eap.2456 pubmed: 34520082
Rusch, A., Valantin-Morison, M., Sarthou, J. P. & Roger-Estrade, J. Integrating crop and landscape management into new crop protection strategies to enhance biological control of oilseed rape insect pests. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I. H.) 415–448 (Springer Netherlands, 2010). https://doi.org/10.1007/978-90-481-3983-5_17 .
doi: 10.1007/978-90-481-3983-5_17
Etienne, L. et al. Pesticide use in vineyards is affected by semi-natural habitats and organic farming share in the landscape. Agric. Ecosyst. Environ. 333, 107967. https://doi.org/10.1016/j.agee.2022.107967 (2022).
doi: 10.1016/j.agee.2022.107967
Muneret, L., Auriol, A., Thiéry, D. & Rusch, A. Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecol. Appl. https://doi.org/10.1002/eap.1818 (2019).
doi: 10.1002/eap.1818 pubmed: 30933399
Ricci, B. et al. Local pesticide use intensity conditions landscape effects on biological pest control. Proc. R. Soc. B 286, 20182898. https://doi.org/10.1098/rspb.2018.2898 (2019).
doi: 10.1098/rspb.2018.2898 pubmed: 31164058 pmcid: 6571472
Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).
doi: 10.1073/pnas.1215725110 pubmed: 23513216 pmcid: 3619341
Guyot, V., Castagneyrol, B., Vialatte, A., Deconchat, M. & Jactel, H. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 20151037. https://doi.org/10.1098/rsbl.2015.1037 (2016).
doi: 10.1098/rsbl.2015.1037 pubmed: 27122011 pmcid: 4881340
Reis, A. R., Ferreira, L., Tomé, M., Araujo, C. & Branco, M. Efficiency of biological control of Gonipterus platensis (Coleoptera: Curculionidae) by Anaphes nitens (Hymenoptera: Mymaridae) in cold areas of the Iberian Peninsula: Implications for defoliation and wood production in Eucalyptus globulus. For. Ecol. Manag. 270, 216–222. https://doi.org/10.1016/j.foreco.2012.01.038 (2012).
doi: 10.1016/j.foreco.2012.01.038
Mitchell, M. G. E. et al. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 30, 190–198. https://doi.org/10.1016/j.tree.2015.01.011 (2015).
doi: 10.1016/j.tree.2015.01.011 pubmed: 25716547
Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613. https://doi.org/10.1016/j.tree.2013.06.010 (2013).
doi: 10.1016/j.tree.2013.06.010 pubmed: 23883740
Andrieu, E., Vialatte, A. & Sirami, C. Misconceptions of fragmentation’s effects on ecosystem services: A response to Mitchell et al.. Trends Ecol. Evol. 30, 633–634. https://doi.org/10.1016/j.tree.2015.09.003 (2015).
doi: 10.1016/j.tree.2015.09.003 pubmed: 26437634
Hilty, J. A., Keeley, A. T. H., Merenlender, A. & Lidicker, W. Z. Corridor Ecology, Second Edition: Linking Landscapes for Biodiversity Conservation and Climate Adaptation (Island Press, 2019).
Larissa Boesing, A. et al. Seasonality modulates habitat cover effects on avian cross-boundary responses and spillover. Ecography https://doi.org/10.1111/ecog.06461 (2022).
doi: 10.1111/ecog.06461
Díaz-Siefer, P. et al. Bird-mediated effects of pest control services on crop productivity: A global synthesis. J. Pest. Sci. 95, 567–576. https://doi.org/10.1007/s10340-021-01438-4 (2022).
doi: 10.1007/s10340-021-01438-4
Garcia, K., Olimpi, E. M., Karp, D. S. & Gonthier, D. J. The good, the bad, and the risky: Can birds be incorporated as biological control agents into integrated pest management programs?. J. Integr. Pest Manag. 11, 11. https://doi.org/10.1093/jipm/pmaa009 (2020).
doi: 10.1093/jipm/pmaa009
de Zwaan, D. R. et al. Balancing conservation priorities for grassland and forest specialist bird communities in agriculturally dominated landscapes. Biol. Conserv. 265, 109402. https://doi.org/10.1016/j.biocon.2021.109402 (2022).
doi: 10.1016/j.biocon.2021.109402
Tscharntke, T., Rand, T. A. & Bianchi, F. J. J. A. The landscape context of trophic interactions: Insect spillover across the crop–noncrop interface. Ann. Zool. Fennici 42, 12 (2005).
Deguine, J.-P. et al. Agroecological crop protection for sustainable agriculture. In Advances in Agronomy Vol. 178 (ed. Sparks, D. L.) 1–59 (Academic Press, 2023). https://doi.org/10.1016/bs.agron.2022.11.002 .
doi: 10.1016/bs.agron.2022.11.002
Vialatte, A. et al. Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. In Advances in Ecological Research (Academic Press; 2021) https://doi.org/10.1016/bs.aecr.2021.10.004 .
Dassou, A. G. & Tixier, P. Response of pest control by generalist predators to local-scale plant diversity: A meta-analysis. Ecol. Evol. 6, 1143–1153. https://doi.org/10.1002/ece3.1917 (2016).
doi: 10.1002/ece3.1917 pubmed: 26839684 pmcid: 4725331
Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354. https://doi.org/10.1111/1365-2664.12055 (2013).
doi: 10.1111/1365-2664.12055
Castagneyrol, B., Giffard, B., Valdés-Correcher, E. & Hampe, A. Tree diversity effects on leaf insect damage on pedunculate oak: The role of landscape context and forest stratum. For. Ecol. Manag. 433, 287–294. https://doi.org/10.1016/j.foreco.2018.11.014 (2019).
doi: 10.1016/j.foreco.2018.11.014
Klapwijk, M. J., Bylund, H., Schroeder, M. & Björkman, C. Forest management and natural biocontrol of insect pests. Forestry 89, 253–262. https://doi.org/10.1093/forestry/cpw019 (2016).
doi: 10.1093/forestry/cpw019
Yang, B. et al. Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecol. Res. 33, 205–212. https://doi.org/10.1007/s11284-017-1531-7 (2018).
doi: 10.1007/s11284-017-1531-7
Redlich, S., Martin, E. A., Wende, B. & Steffan-Dewenter, I. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE 13, e0200438. https://doi.org/10.1371/journal.pone.0200438 (2018).
doi: 10.1371/journal.pone.0200438 pubmed: 30067851 pmcid: 6070203
Rusch, A., Delbac, L. & Thiéry, D. Grape moth density in Bordeaux vineyards depends on local habitat management despite effects of landscape heterogeneity on their biological control. J. Appl. Ecol. 54, 1794–1803. https://doi.org/10.1111/1365-2664.12858 (2017).
doi: 10.1111/1365-2664.12858
Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).
doi: 10.1111/1365-2664.12740
Sourdril, A., Andrieu, É., Cabanettes, A., Elyakime, B. & Ladet, S. How to maintain domesticity of usages in small rural forests? Lessons from forest management continuity through a french case study. Ecol. Soc. 17, 6. https://doi.org/10.5751/ES-04746-170206 (2012).
doi: 10.5751/ES-04746-170206
Fauvel, M. et al. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series. Remote Sens. Environ. 237, 111536. https://doi.org/10.1016/j.rse.2019.111536 (2020).
doi: 10.1016/j.rse.2019.111536
Inglada, J. et al. Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sens. 9, 95. https://doi.org/10.3390/rs9010095 (2017).
doi: 10.3390/rs9010095
Registre parcellaire graphique (RPG) : contours des parcelles et îlots culturaux et leur groupe de cultures majoritaire. (Institut National de l’Information Géographique et Forestière, 2017).
Environmental Systems Research Institute. ArcGis Desktop Advanced (2023).
Cateau, E. et al. Ancienneté et maturité : deux qualités complémentaires d’un écosystème forestier. C.R. Biol. 338, 58–73. https://doi.org/10.1016/j.crvi.2014.10.004 (2015).
doi: 10.1016/j.crvi.2014.10.004 pubmed: 25455000
Vallauri, D., Rossi, M. & Cateau, E. La nature en forêt : qualités clés à conserver. Rev For Fr 2015:Fr.], ISSN 0035. https://doi.org/10.4267/2042/57904 .
Institut National de l’Information Géographique et Forestière (IGN) (2023) https://geoservices.ign.fr/services-web .
Dupouey, J. L., Sciama, D., Dambrine, E., Rameau, J.-C. & Koerner, W. La végétation des forêts anciennes. Rev. For. Fr. https://doi.org/10.4267/2042/4940 (2002).
doi: 10.4267/2042/4940
Perrot, T., Rusch, A., Coux, C., Gaba, S. & Bretagnolle, V. Proportion of grassland at landscape scale drives natural pest control services in agricultural landscapes. Front. Ecol. Evol. 9, 227. https://doi.org/10.3389/fevo.2021.607023 (2021).
doi: 10.3389/fevo.2021.607023
Muneret, L. et al. Carabid beetles have hump-shaped responses to disturbance and resource gradients within agricultural landscapes. J. Appl. Ecol. 60, 581–591. https://doi.org/10.1111/1365-2664.14357 (2023).
doi: 10.1111/1365-2664.14357
Steffan-Dewenter, I. Landscape context affects trap-nesting bees, wasps, and their natural enemies: Landscape context affects bees and wasps. Ecol. Entomol. 27, 631–637. https://doi.org/10.1046/j.1365-2311.2002.00437.x (2002).
doi: 10.1046/j.1365-2311.2002.00437.x
Redlich, S., Martin, E. A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428. https://doi.org/10.1111/1365-2664.13126 (2018).
doi: 10.1111/1365-2664.13126
Martin, E. A. et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094. https://doi.org/10.1111/ele.13265 (2019).
doi: 10.1111/ele.13265 pubmed: 30957401
Muiruri, E. W., Rainio, K. & Koricheva, J. Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae. Oecologia 180, 619–630. https://doi.org/10.1007/s00442-015-3391-6 (2016).
doi: 10.1007/s00442-015-3391-6 pubmed: 26201260
Carbonne, B. et al. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14043 (2021).
doi: 10.1111/1365-2664.14043
Aszalós, R. et al. Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecol. Appl. 32, e2596. https://doi.org/10.1002/eap.2596 (2022).
doi: 10.1002/eap.2596 pubmed: 35340078
Zeller, L. et al. Index of biodiversity potential (IBP) versus direct species monitoring in temperate forests. Ecol. Indic. 136, 108692. https://doi.org/10.1016/j.ecolind.2022.108692 (2022).
doi: 10.1016/j.ecolind.2022.108692
Larrieu, L. et al. Post-harvesting dynamics of the deadwood profile: The case of lowland beech-oak coppice-with-standards set-aside stands in France. Eur. J. For. Res. 138, 239–251. https://doi.org/10.1007/s10342-019-01164-8 (2019).
doi: 10.1007/s10342-019-01164-8
Larrieu, L. et al. Development over time of the tree-related microhabitat profile: The case of lowland beech–oak coppice-with-standards set-aside stands in France. Eur. J. For. Res. 136, 37–49. https://doi.org/10.1007/s10342-016-1006-3 (2017).
doi: 10.1007/s10342-016-1006-3
Lechenet, M. et al. Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PLoS ONE https://doi.org/10.1371/journal.pone.0097922 (2014).
doi: 10.1371/journal.pone.0097922 pubmed: 24887494 pmcid: 4041714
OECD. Environmental Indicators for Agriculture, volume 3: Methods and Results (OECD, 2001).
doi: 10.1787/9789264188556-en
French Ministry of Agriculture and Agribusiness. Ephy website. Le catalogue des produits phytopharmaceutiques et de leurs usages des matières fertilisantes et des Supports de culture homologués en France (2016).
Alruhaymi, A. Z. & Kim, C. J. Why can multiple imputations and how (mice) algorithm work?. OJS 11, 759–777. https://doi.org/10.4236/ojs.2021.115045 (2021).
doi: 10.4236/ojs.2021.115045
Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187–228. https://doi.org/10.1016/S0167-8809(99)00037-7 (1999).
doi: 10.1016/S0167-8809(99)00037-7
Kotze, D. J. et al. Forty years of carabid beetle research in Europe—From taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100, 55–148. https://doi.org/10.3897/zookeys.100.1523 (2011).
doi: 10.3897/zookeys.100.1523
Bibby, C. J., Burgess, N. D. & Hill, D. A. Point counts. In Bird Census Techniques, 85–104 (Elsevier, 1992) https://doi.org/10.1016/B978-0-12-095830-6.50010-9 .
Gaüzère, P. et al. Long-term effects of combined land-use and climate changes on local bird communities in mosaic agricultural landscapes. Agric. Ecosyst. Environ. 289, 106722. https://doi.org/10.1016/j.agee.2019.106722 (2020).
doi: 10.1016/j.agee.2019.106722
Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions: Measuring predation pressure by sentinel prey. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).
doi: 10.1111/1744-7917.12405 pubmed: 27686246
Valdes-Correcher, E. et al. Following the track: Accuracy and reproducibility of predation assessment on artificial caterpillars. Entomol. Exp. Appl. 170, 914–921. https://doi.org/10.1111/eea.13210 (2022).
doi: 10.1111/eea.13210
Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).
doi: 10.1111/ddi.12132
McHugh, N. M., Moreby, S., Lof, M. E., Werf, W. & Holland, J. M. The contribution of semi-natural habitats to biological control is dependent on sentinel prey type. J. Appl. Ecol. 57, 914–925. https://doi.org/10.1111/1365-2664.13596 (2020).
doi: 10.1111/1365-2664.13596
Meyer, S. T., Leidinger, J. L. G., Gossner, M. M. & Weisser, W. W. Handbook of Field Protocols for Using REFA Methods to Approximate Ecosystem Functions Vol. 19 (2017) https://doi.org/10.14459/2017MD1400892 .
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
doi: 10.32614/RJ-2017-066
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
doi: 10.1111/j.2041-210X.2009.00001.x
Bartoń, K. MuMIn: Multi-Model Inference (R Package Version 1.43. 15) [Computer software] 2019.
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).
doi: 10.1177/0049124104268644
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Package Version 03, Vol. 3 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022).
Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).
doi: 10.1111/ele.12173 pubmed: 23981013
Aristizábal, N. & Metzger, J. P. Landscape structure regulates pest control provided by ants in sun coffee farms. J. Appl. Ecol. 56, 21–30. https://doi.org/10.1111/1365-2664.13283 (2019).
doi: 10.1111/1365-2664.13283
Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 23, 1488–1498. https://doi.org/10.1111/ele.13576 (2020).
doi: 10.1111/ele.13576 pubmed: 32808477 pmcid: 7540530
Morandin, L. A., Long, R. F. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027. https://doi.org/10.1093/jee/tow086 (2016).
doi: 10.1093/jee/tow086 pubmed: 27170730
Tortosa, A. et al. Natural enemies emerging in cereal fields in spring may contribute to biological control. Agric. For. Entomol. https://doi.org/10.1111/afe.12490 (2022).
doi: 10.1111/afe.12490
Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).
doi: 10.1146/annurev.ecolsys.110308.120320
Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38. https://doi.org/10.1016/j.biocontrol.2014.01.006 (2014).
doi: 10.1016/j.biocontrol.2014.01.006
Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579. https://doi.org/10.1111/j.1365-2664.2010.01950.x (2011).
doi: 10.1111/j.1365-2664.2010.01950.x
Laforge, A. et al. Road density and forest fragmentation shape bat communities in temperate mosaic landscapes. Landsc. Urban Plan. 221, 104353. https://doi.org/10.1016/j.landurbplan.2022.104353 (2022).
doi: 10.1016/j.landurbplan.2022.104353
De Camargo, R. X., Boucher-Lalonde, V. & Currie, D. J. At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Divers. Distrib. 24, 629–639. https://doi.org/10.1111/ddi.12706 (2018).
doi: 10.1111/ddi.12706
Berg, Å. Composition and diversity of bird communities in Swedish farmland–forest mosaic landscapes. Bird Study 49, 153–165. https://doi.org/10.1080/00063650209461260 (2002).
doi: 10.1080/00063650209461260
Marcolin, F., Lakatos, T., Gallé, R. & Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob. Ecol. Conserv. 28, e01687. https://doi.org/10.1016/j.gecco.2021.e01687 (2021).
doi: 10.1016/j.gecco.2021.e01687
Pithon, J. A. et al. Grasslands provide diverse opportunities for bird species along an urban-rural gradient. Urban Ecosyst. 24, 1281–1294. https://doi.org/10.1007/s11252-021-01114-6 (2021).
doi: 10.1007/s11252-021-01114-6
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919. https://doi.org/10.1126/science.aat3466 (2018).
doi: 10.1126/science.aat3466 pubmed: 30166490
Sharma, S., Kooner, R. & Arora, R. Insect pests and crop losses. In Breeding Insect Resistant Crops for Sustainable Agriculture (eds Arora, R. & Sandhu, S.) 45–66 (Springer, 2017). https://doi.org/10.1007/978-981-10-6056-4_2 .
doi: 10.1007/978-981-10-6056-4_2
Vialatte, A. et al. A conceptual framework for the governance of multiple ecosystem services in agricultural landscapes. Landsc. Ecol. 34, 1653–1673. https://doi.org/10.1007/s10980-019-00829-4 (2019).
doi: 10.1007/s10980-019-00829-4
Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 1–8. https://doi.org/10.1038/s43247-021-00256-x (2021).
doi: 10.1038/s43247-021-00256-x
Montoya, D. et al. Trade-offs in the provisioning and stability of ecosystem services in agroecosystems. Ecol. Appl. 29, e01853. https://doi.org/10.1002/eap.1853 (2019).
doi: 10.1002/eap.1853 pubmed: 30779460 pmcid: 6407690
Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: Patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296. https://doi.org/10.1146/annurev-ento-041720-075234 (2021).
doi: 10.1146/annurev-ento-041720-075234 pubmed: 32903046
Gil-Tena, A., Saura, S. & Brotons, L. Effects of forest composition and structure on bird species richness in a Mediterranean context: Implications for forest ecosystem management. For. Ecol. Manag. 242, 470–476. https://doi.org/10.1016/j.foreco.2007.01.080 (2007).
doi: 10.1016/j.foreco.2007.01.080
Martin, A. E. et al. Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agric. Ecosyst. Environ. 288, 106698. https://doi.org/10.1016/j.agee.2019.106698 (2020).
doi: 10.1016/j.agee.2019.106698
Kross, S. M., Kelsey, T. R., McColl, C. J. & Townsend, J. M. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric. Ecosyst. Environ. 225, 140–149. https://doi.org/10.1016/j.agee.2016.03.043 (2016).
doi: 10.1016/j.agee.2016.03.043
Barbaro, L. et al. Organic management and landscape heterogeneity combine to sustain multifunctional bird communities in European vineyards. J. Appl. Ecol. 58, 1261–1271. https://doi.org/10.1111/1365-2664.13885 (2021).
doi: 10.1111/1365-2664.13885

Auteurs

Axelle Tortosa (A)

Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France. axelle.tortosa@inrae.fr.

Brice Giffard (B)

Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140, Villenave d'Ornon, France.

Clélia Sirami (C)

Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France.

Laurent Larrieu (L)

Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France.
CNPF-CRPF Occitanie, 7 chemin de la Lacade, 31320, Auzeville Tolosane, France.

Sylvie Ladet (S)

Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France.

Aude Vialatte (A)

Université de Toulouse, INRAE, DYNAFOR, Castanet-Tolosan, France.

Articles similaires

Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Zea mays Triticum China Seasons Crops, Agricultural

Classifications MeSH