High-speed multiplane confocal microscopy for voltage imaging in densely labeled neuronal populations.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
09 2023
Historique:
received: 09 02 2022
accepted: 17 07 2023
medline: 4 9 2023
pubmed: 22 8 2023
entrez: 21 8 2023
Statut: ppublish

Résumé

Genetically encoded voltage indicators (GEVIs) hold immense potential for monitoring neuronal population activity. To date, best-in-class GEVIs rely on one-photon excitation. However, GEVI imaging of dense neuronal populations remains difficult because out-of-focus background fluorescence produces low contrast and excess noise when paired with conventional one-photon widefield imaging methods. To address this challenge, we developed an imaging system capable of efficient, high-contrast GEVI imaging at near-kHz rates and demonstrate it for in vivo and ex vivo imaging applications in the mouse neocortex. Our approach uses simultaneous multiplane imaging to monitor activity within contiguous tissue volumes with no penalty in speed or requirement for high excitation power. This approach, multi-Z imaging with confocal detection (MuZIC), permits high signal-to-noise ratio voltage imaging in densely labeled neuronal populations and is compatible with imaging through micro-optics. Moreover, it minimizes artifacts associated with concurrent imaging and optogenetic photostimulation for all-optical electrophysiology.

Identifiants

pubmed: 37604887
doi: 10.1038/s41593-023-01408-2
pii: 10.1038/s41593-023-01408-2
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1642-1650

Subventions

Organisme : NIMH NIH HHS
ID : F32 MH129149
Pays : United States
Organisme : NIMH NIH HHS
ID : RF1 MH126882
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB029171
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
doi: 10.1038/nature12354 pubmed: 23868258 pmcid: 3777791
Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).
doi: 10.1038/nmeth.1398 pubmed: 19898485 pmcid: 2858873
Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).
doi: 10.1038/s41586-023-05828-9 pubmed: 36922596 pmcid: 10060165
Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).
doi: 10.1016/j.neuron.2012.02.011 pubmed: 22405199
Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).
doi: 10.1016/j.neuron.2018.03.040 pubmed: 29673479 pmcid: 5912347
Wachowiak, M. et al. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J. Neurosci. 33, 5285–5300 (2013).
doi: 10.1523/JNEUROSCI.4824-12.2013 pubmed: 23516293 pmcid: 3690468
Wei, Z. et al. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLOS Comput. Biol. 16, e1008198 (2020).
doi: 10.1371/journal.pcbi.1008198 pubmed: 32931495 pmcid: 7518847
Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).
doi: 10.1126/science.aav6416 pubmed: 31371562
Abdelfattah, A. S. et al. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron 111, 1547–1563 (2023).
doi: 10.1016/j.neuron.2023.03.009 pubmed: 37015225
Piatkevich, K. D. et al. Population imaging of neural activity in awake behaving mice. Nature 574, 413–417 (2019).
doi: 10.1038/s41586-019-1641-1 pubmed: 31597963 pmcid: 6858559
Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).
doi: 10.1038/s41586-019-1166-7 pubmed: 31043747 pmcid: 6613938
Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608 (2019).
doi: 10.1016/j.cell.2019.11.004 pubmed: 31835034 pmcid: 6941988
Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).
doi: 10.1038/nmeth.3000 pubmed: 24952910 pmcid: 4117813
Knöpfel, T., Gallero-Salas, Y. & Song, C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr. Opin. Chem. Biol. 27, 75–83 (2015).
doi: 10.1016/j.cbpa.2015.06.006 pubmed: 26115448
Xiao, S. et al. Large-scale voltage imaging in behaving mice using targeted illumination. iScience 24, 103263 (2021).
doi: 10.1016/j.isci.2021.103263 pubmed: 34761183 pmcid: 8567393
Kazemipour, A. et al. Kilohertz frame-rate two-photon tomography. Nat. Methods 16, 778–786 (2019).
doi: 10.1038/s41592-019-0493-9 pubmed: 31363222 pmcid: 6754705
Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17, 287–290 (2020).
doi: 10.1038/s41592-020-0762-7 pubmed: 32123392 pmcid: 7199528
Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).
doi: 10.1038/s41589-018-0004-9 pubmed: 29483642 pmcid: 5866759
Brinks, D., Klein, A. J. & Cohen, A. E. Two-photon lifetime imaging of voltage indicating proteins as a probe of absolute membrane voltage. Biophys. J. 109, 914–921 (2015).
doi: 10.1016/j.bpj.2015.07.038 pubmed: 26331249 pmcid: 4564826
Chamberland, S. et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 6, e25690 (2017).
doi: 10.7554/eLife.25690 pubmed: 28749338 pmcid: 5584994
Badon, A. et al. Video-rate large-scale imaging with multi-Z confocal microscopy. Optica 6, 389–395 (2019).
doi: 10.1364/OPTICA.6.000389 pubmed: 34504902 pmcid: 8425499
Tsang, J.-M. et al. Fast, multiplane line-scan confocal microscopy using axially distributed slits. Biomed. Opt. Express 12, 1339–1350 (2021).
doi: 10.1364/BOE.417286 pubmed: 33796357 pmcid: 7984773
Lillis, K. P., Eng, A., White, J. A. & Mertz, J. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J. Neurosci. Methods 172, 178–184 (2008).
doi: 10.1016/j.jneumeth.2008.04.024 pubmed: 18539336 pmcid: 2582024
Göbel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4, 73–79 (2007).
doi: 10.1038/nmeth989 pubmed: 17143280
Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201–208 (2012).
doi: 10.1038/nmeth.1851 pubmed: 22231641
Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).
doi: 10.1038/nmeth.1453 pubmed: 20400966
Nadella, K. M. N. S. et al. Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat. Methods 13, 1001–1004 (2016).
doi: 10.1038/nmeth.4033 pubmed: 27749836 pmcid: 5769813
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).
Andermann, M. L. et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80, 900–913 (2013).
doi: 10.1016/j.neuron.2013.07.052 pubmed: 24139817
Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014).
doi: 10.1038/nn.3866 pubmed: 25402854 pmcid: 4459599
Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).
doi: 10.1038/nmeth.3217 pubmed: 25532138
Altkorn, R. & Zare, R. N. Effects of saturation on laser-induced fluorescence measurements of population and polarization. Annu. Rev. Phys. Chem. 35, 265–289 (1984).
doi: 10.1146/annurev.pc.35.100184.001405
Zhang, L. et al. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr. Protoc. Neurosci. 86, e56 (2019).
doi: 10.1002/cpns.56 pubmed: 30315730
Murayama, M. & Larkum, M. E. In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat. Protoc. 4, 1551–1559 (2009).
doi: 10.1038/nprot.2009.142 pubmed: 19798087
Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).
doi: 10.1186/1475-925X-2-13 pubmed: 12801419 pmcid: 161784
Savarese, M. et al. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J. Phys. Chem. A 116, 7491–7497 (2012).
doi: 10.1021/jp3021485 pubmed: 22667332
Kim, J.-Y., Grunke, S. D., Levites, Y., Golde, T. E. & Jankowsky, J. L. Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J. Vis. Exp. 91, e51863 (2014).
Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. in Patch-Clamp Methods and Protocols (eds Martina, M. & Taverna, S.) 221–242 (Springer, 2014).
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).
doi: 10.1038/nmeth.4403 pubmed: 28869757 pmcid: 5621985
Kılıç, K. et al. Chronic cranial windows for long term multimodal neurovascular imaging in mice. Front. Physiol. 11, 612678 (2021).
doi: 10.3389/fphys.2020.612678 pubmed: 33551837 pmcid: 7862556
Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).
doi: 10.1016/j.neuron.2015.03.027 pubmed: 25913859

Auteurs

Timothy D Weber (TD)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Maria V Moya (MV)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Center for Systems Neuroscience, Boston University, Boston, MA, USA.

Kıvılcım Kılıç (K)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Neurophotonics Center, Boston University, Boston, MA, USA.

Jerome Mertz (J)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Center for Systems Neuroscience, Boston University, Boston, MA, USA.
Neurophotonics Center, Boston University, Boston, MA, USA.
Photonics Center, Boston University, Boston, MA, USA.

Michael N Economo (MN)

Department of Biomedical Engineering, Boston University, Boston, MA, USA. mne@bu.edu.
Center for Systems Neuroscience, Boston University, Boston, MA, USA. mne@bu.edu.
Neurophotonics Center, Boston University, Boston, MA, USA. mne@bu.edu.
Photonics Center, Boston University, Boston, MA, USA. mne@bu.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH