Optimal routing to cerebellum-like structures.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
28
03
2022
accepted:
12
07
2023
medline:
4
9
2023
pubmed:
22
8
2023
entrez:
21
8
2023
Statut:
ppublish
Résumé
The vast expansion from mossy fibers to cerebellar granule cells (GrC) produces a neural representation that supports functions including associative and internal model learning. This motif is shared by other cerebellum-like structures and has inspired numerous theoretical models. Less attention has been paid to structures immediately presynaptic to GrC layers, whose architecture can be described as a 'bottleneck' and whose function is not understood. We therefore develop a theory of cerebellum-like structures in conjunction with their afferent pathways that predicts the role of the pontine relay to cerebellum and the glomerular organization of the insect antennal lobe. We highlight a new computational distinction between clustered and distributed neuronal representations that is reflected in the anatomy of these two brain structures. Our theory also reconciles recent observations of correlated GrC activity with theories of nonlinear mixing. More generally, it shows that structured compression followed by random expansion is an efficient architecture for flexible computation.
Identifiants
pubmed: 37604889
doi: 10.1038/s41593-023-01403-7
pii: 10.1038/s41593-023-01403-7
pmc: PMC10506727
mid: NIHMS1930098
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1630-1641Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB029858
Pays : United States
Organisme : NCRR NIH HHS
ID : G20 RR030893
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).
pubmed: 26906502
Bell, C. C., Han, V. & Sawtell, N. B. Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci. 31, 1–24 (2008).
pubmed: 18275284
Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969).
pubmed: 5784296
pmcid: 1351491
Babadi, B. & Sompolinsky, H. Sparseness and expansion in sensory representations. Neuron 83, 1213–1226 (2014).
pubmed: 25155954
Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H. & Abbott, L. F. Optimal degrees of synaptic connectivity. Neuron 93, 1153–1164.e7 (2017).
pubmed: 28215558
pmcid: 5379477
Cayco-Gajic, N. A. & Silver, R. A. Re-evaluating circuit mechanisms underlying pattern separation. Neuron 101, 584–602 (2019).
pubmed: 30790539
pmcid: 7028396
Brodal, P. & Bjaalie, J. G. Organization of the pontine nuclei. Neurosci. Res. 13, 83–118 (1992).
pubmed: 1374872
Chen, W. R. & Shepherd, G. M. The olfactory glomerulus: a cortical module with specific functions. J. Neurocytol. 34, 353–360 (2005).
pubmed: 16841172
Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).
pubmed: 17922008
pmcid: 2838615
Olsen, S. R. & Wilson, R. I. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008).
pubmed: 18344978
pmcid: 2824883
Olsen, S. R., Bhandawat, V. & Wilson, R. I. Divisive normalization in olfactory population codes. Neuron 66, 287–299 (2010).
pubmed: 20435004
pmcid: 2866644
Guo, J.-Z. et al. Disrupting cortico-cerebellar communication impairs dexterity. eLife 10, e65906 (2021).
pubmed: 34324417
pmcid: 8321550
Wagner, M. J. et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682.e24 (2019).
pubmed: 30929904
pmcid: 6500577
Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000).
pubmed: 10943836
Marin, E. C., Jefferis, G. S. X. E., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).
pubmed: 12007410
Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).
pubmed: 12007409
Berck, M. E. et al. The wiring diagram of a glomerular olfactory system. eLife 5, e14859 (2016).
pubmed: 27177418
pmcid: 4930330
Bates, A. S. et al. Complete connectomic reconstruction of olfactory projection neurons in the fly brain. Curr. Biol. 30, 3183–3199.e6 (2020).
pubmed: 32619485
pmcid: 7443706
Chadderton, P., Margrie, T. W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).
pubmed: 15103377
Ito, I., Ong, R. C.-Y., Raman, B. & Stopfer, M. Sparse odor representation and olfactory learning. Nat. Neurosci. 11, 1177–1184 (2008).
pubmed: 18794840
pmcid: 3124899
Kolkman, K. E., McElvain, L. E. & du Lac, S. Diverse precerebellar neurons share similar intrinsic excitability. J. Neurosci. 31, 16665–16674 (2011).
pubmed: 22090493
pmcid: 3265393
Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).
pubmed: 23725001
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Caron, S. J. C., Ruta, V., Abbott, L. F. & Axel, R. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497, 113–117 (2013).
pubmed: 23615618
pmcid: 4148081
Gruntman, E. & Turner, G. C. Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat. Neurosci. 16, 1821–1829 (2013).
pubmed: 24141312
pmcid: 3908930
Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).
pubmed: 16615896
Friedrich, R. W. & Wiechert, M. T. Neuronal circuits and computations: pattern decorrelation in the olfactory bulb. FEBS Lett. 588, 2504–2513 (2014).
pubmed: 24911205
Schlegel, P. et al. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021).
pubmed: 34032214
pmcid: 8298098
Peters, A. J., Lee, J., Hedrick, N. G., O’Neil, K. & Komiyama, T. Reorganization of corticospinal output during motor learning. Nat. Neurosci. 20, 1133–1141 (2017).
pubmed: 28671694
pmcid: 5656286
Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).
pubmed: 21227230
Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966.e8 (2018).
pubmed: 29398358
pmcid: 5823788
Saxena, S., Russo, A. A., Cunningham, J. & Churchland, M. M. Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. eLife 11, e67620 (2022).
pubmed: 35621264
pmcid: 9197394
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).
pubmed: 31907438
pmcid: 7007364
Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).
pubmed: 7153672
Pehlevan, C. & Chklovskii, D. B. Optimization theory of Hebbian/anti-Hebbian networks for PCA and whitening. In 53rd Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA 1458–1465 (Allerton, 2015).
Schwarz, C. & Thier, P. Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci. 22, 443–451 (1999).
pubmed: 10481191
Pehlevan, C., Hu, T. & Chklovskii, D. B. A Hebbian/anti-Hebbian neural network for linear subspace learning: a derivation from multidimensional scaling of streaming data. Neural Comput. 27, 1461–1495 (2015).
pubmed: 25973548
Barak, O., Rigotti, M. & Fusi, S. The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. J. Neurosci. 33, 3844–3856 (2013).
pubmed: 23447596
pmcid: 6119179
Ganguli, S. & Sompolinsky, H. Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annu. Rev. Neurosci. 35, 485–508 (2012).
pubmed: 22483042
Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) 216–234 (MIT Press, 1961).
Atick, J. J. Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3, 213–251 (1992).
Simoncelli, E. P. Vision and the statistics of the visual environment. Curr. Opin. Neurobiol. 13, 144–149 (2003).
pubmed: 12744966
Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243 (1991).
Benna, M. K. & Fusi, S. Place cells may simply be memory cells: memory compression leads to spatial tuning and history dependence. Proc. Natl Acad. Sci. USA 118, e2018422118 (2021).
pubmed: 34916282
pmcid: 8713479
Baldi, P. & Hornik, K. Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2, 53–58 (1989).
Apps, R. & Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297–311 (2005).
pubmed: 15803161
Oscarsson, O. Functional organization of the spino- and cuneocerebellar tracts. Physiol. Rev. 45, 495–522 (1965).
pubmed: 14337566
Kennedy, A. et al. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat. Neurosci. 17, 416–422 (2014).
pubmed: 24531306
pmcid: 4070001
Bratton, B. & Bastian, J. Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J. Neurosci. 10, 1241–1253 (1990).
pubmed: 2158528
pmcid: 6570225
Kazama, H. & Wilson, R. I. Origins of correlated activity in an olfactory circuit. Nat. Neurosci. 12, 1136–1144 (2009).
pubmed: 19684589
pmcid: 2751859
Chapochnikov, N. M., Pehlevan, C. & Chklovskii, D. B. Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction. Proc. Natl Acad. Sci. USA 120, e21174841 (2023).
Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 370, eabd5059 (2020).
pubmed: 33335034
pmcid: 8510508
Barbosa, J., Proville, R., Rodgers, C. C., Ostojic, S. & Boubenec, Y. Flexible selection of task-relevant features through across-area population gating. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500962 (2022).
Leergaard, T. B. & Bjaalie, J. G. Topography of the complete corticopontine projection: from experiments to principal Maps. Front. Neurosci. 1, 211–223 (2007).
pubmed: 18982130
pmcid: 2518056
Kratochwil, C. F., Maheshwari, U. & Rijli, F. M. The long journey of pontine nuclei neurons: from rhombic lip to cortico-ponto-cerebellar circuitry. Front. Neural Circuits https://doi.org/10.3389/fncir.2017.00033 (2017).
doi: 10.3389/fncir.2017.00033
pubmed: 28567005
pmcid: 5434118
Mihailoff, G. A., Lee, H., Watt, C. B. & Yates, R. Projections to the basilar pontine nuclei from face sensory and motor regions of the cerebral cortex in the rat. J. Comp. Neurol. 237, 251–263 (1985).
pubmed: 4031124
Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A. Cerebellar granule cell axons support high-dimensional representations. Nat. Neurosci. 24, 1142–1150 (2021).
pubmed: 34168340
pmcid: 7611462
Xie, M., Muscinelli, S., Harris, K. D. & Litwin-Kumar, A. Task-dependent optimal representations for cerebellar learning. Preprint at bioRxiv https://doi.org/10.1101/2022.08.15.504040 (2022).
Stewart, G. W. The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403–409 (1980).
Abbott, L. F., Rajan, K. & Sompolinsky, H. The Dynamic Brain: An Exploration of Neuronal Variability and its Functional Significance (eds Ding, M. & Glanzman, D.) 65–82 (Oxford Academic, 2011).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv https://doi.org/10.48550/arXiv.1412.6980 (2017).
Fagg, A., Sitkoff, N., Barto, A. & Houk, J. Cerebellar learning for control of a two-link arm in muscle space. In Proc. of International Conference on Robotics and Automation, Albuquerque, NM, USA, Vol. 3, 2638–2644 (IEEE, 1997).