The connection between stress, density, and speed in crowds.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 08 2023
21 08 2023
Historique:
received:
09
02
2023
accepted:
18
07
2023
medline:
23
8
2023
pubmed:
22
8
2023
entrez:
21
8
2023
Statut:
epublish
Résumé
Moving around in crowds is part of our daily lives, and we are used to the associated restriction of mobility. Nevertheless, little is known about how individuals experience these limitations. Such knowledge would, however, help to predict behavior, assess crowding, and improve measures for safety and comfort. To address this research gap, we conducted two studies on how constrained mobility affects physiological arousal as measured by mobile electrodermal activity (EDA) sensors. In study 1, we constrained walking speed by externally imposing a specific walking speed without physical proximity to another person, while, in study 2, we varied walking speed by increasing the number of people in a given area. In study 1, we confirmed previous findings showing that faster speeds led to statistically significantly higher levels of physiological arousal. The external limitations of walking speed, however, even if perceived as uncomfortable, did not increase physiological arousal. In the second study, subjects' speed was gradually reduced by density in a single-lane experiment. This study shows that physiological arousal increased statistically significant with increasing density and decreasing speed, suggesting that people experience more stress when their movement is restricted by proximity to others. The result of study 2 is even more significant given the results of study 1: When there are no other people around, arousal increases with walking speed due to the physiology of walking. This effect reverses when the speed must be reduced due to other people. Then the arousal increases at lower speeds.
Identifiants
pubmed: 37604897
doi: 10.1038/s41598-023-39006-8
pii: 10.1038/s41598-023-39006-8
pmc: PMC10442413
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13626Informations de copyright
© 2023. Springer Nature Limited.
Références
Adrian, J. et al. A Glossary for research on human crowd dynamics. Collect. Dyn. https://doi.org/10.17815/CD.2019.19 (2019).
doi: 10.17815/CD.2019.19
Sieben, A., Schumann, J. & Seyfried, A. Collective phenomena in crowds-Where pedestrian dynamics need social psychology. PLoS ONE 12, e0177328 (2017).
doi: 10.1371/journal.pone.0177328
pubmed: 28591142
pmcid: 5462364
Helbing, D. & Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51, 4282–4286. https://doi.org/10.1103/PhysRevE.51.4282 (1995).
doi: 10.1103/PhysRevE.51.4282
Moussaïd, M. et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5, e10047. https://doi.org/10.1371/journal.pone.0010047 (2010).
doi: 10.1371/journal.pone.0010047
pubmed: 20383280
pmcid: 2850937
Drury, J. The nature of collective resilience: Survivor reactions to the 2005 London bombings. Int. J. Mass Emerg. Disasters 27, 66 (2009).
doi: 10.1177/028072700902700104
Templeton, A., Drury, J. & Philippides, A. From mindless masses to small groups: Conceptualizing collective behavior in crowd modeling. Rev. Gen. Psychol. 19, 215–229. https://doi.org/10.1037/gpr0000032 (2015).
doi: 10.1037/gpr0000032
pubmed: 26388685
pmcid: 4568938
von Sivers, I. et al. Modelling social identification and helping in evacuation simulation. Saf. Sci. 89, 288–300. https://doi.org/10.1016/j.ssci.2016.07.001 (2016).
doi: 10.1016/j.ssci.2016.07.001
Bode, N. W. F. et al. Disentangling the impact of social groups on response times and movement dynamics in evacuations. PLoS ONE 10, e0121227. https://doi.org/10.1371/journal.pone.0121227 (2015).
doi: 10.1371/journal.pone.0121227
pubmed: 25785603
pmcid: 4364745
Filingeri, V. et al. Factors influencing experience in crowds—The participant perspective. Appl. Ergon. 59, 431–441. https://doi.org/10.1016/j.apergo.2016.09.009 (2017).
doi: 10.1016/j.apergo.2016.09.009
pubmed: 27890155
Jia, X. et al. Revisiting the level-of-service framework for pedestrian comfortability: Velocity depicts more accurate perceived congestion than local density. Transp. Res. F Traffic Psychol. Behav. 87, 403–425. https://doi.org/10.1016/j.trf.2022.04.007 (2022).
doi: 10.1016/j.trf.2022.04.007
Papastefanou, G. Ambulatorisches assessment: Eine Methode (auch) für die Empirische Sozialforschung. In Umfrageforschung: Herausforderungen und Grenzen (ed. Weichbold, M.) 443–468 (VS Verl. für Sozialwissenschaften, 2009).
doi: 10.1007/978-3-531-91852-5_22
Pons, F. et al. The relationship between density perceptions and satisfaction in the retail setting: Mediation and moderation effects. J. Bus. Res. 69, 1000–1007. https://doi.org/10.1016/j.jbusres.2015.09.005 (2016).
doi: 10.1016/j.jbusres.2015.09.005
Machleit, K. A., Eroglu, S. A. & Powell Mantel, S. Perceived retail crowding and shopping satisfaction: What modifies this relationship?. J. Consum. Psychol. 9, 29–42. https://doi.org/10.1207/15327660051044231 (2000).
doi: 10.1207/15327660051044231
Konya, K. & Sieben, A. Waiting and walking with strangers: a socio-psychological pedestrian experiment on joint action in anonymous situations. R. Soc. Open Sci. 10, 221601. https://doi.org/10.1098/rsos.221601 (2023).
doi: 10.1098/rsos.221601
pubmed: 37293361
pmcid: 10245200
Reimer, K. Die Bewegung der Menschenmassen in Verkehrsräumen. Glasers Annalen 71, 121–131 (1947).
Holl S (2016) Methoden für die Bemessung der Leistungsfähigkeit multidirektional genutzter Fußverkehrsanlagen. Schriften des Forschungszentrums Jülich : […], IAS series, Band 32. Forschungszentrum Jülich GmbH, Zentralbibliothek, Jülich
Dieckmann, D. Die Feuersicherheit in Theatern (Jung, 1911).
Fruin, J. J. Pedestrian planning and design (Metropolitan Association of Urban Designers and Environmental Planners, 1971).
Transportation Research Board. Highway capacity manual (National Research Council, 2000).
Transport for London (2010) Pedestrian Comfort Guidance for London. Guidance Document. Mayor of London, 1st edn., London
Weidmann U (1993) Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung. ETH Zurich
Scholz G (1952) Geschwindigkeit und Energieaufwand beim Gehen: Ein Beitrag zur Untersuchung der Grundlagen für die zweckmäßige Gestaltung von Fußgängerverkehrsanlagen. Disssertation, Technische Hochschule Hannover, Hannover
Oeding D (1963) Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fussgängerverkehrs. Straßenbau und Straßenverkehrstechnik
Hall, E. T. The hidden dimension (Anchor Books, New York, NY, 1966).
Hayduk, L. A. Personal space: An evaluative and orienting overview. Psychol. Bull. 85, 117–134. https://doi.org/10.1037/0033-2909.85.1.117 (1978).
doi: 10.1037/0033-2909.85.1.117
Semmer, N. K. & Zapf, D. Theorien der Stressentstehung und -bewältigung. In Handbuch Stressregulation und Sport (eds Fuchs, R. & Gerber, M.) 23–50 (Springer, 2018).
doi: 10.1007/978-3-662-49322-9_1
Boucsein W (2012) Electrodermal activity
Dawson, M. E. et al. The electrodermal system. In Handbook of Psychophysiology (eds Cacioppo, J. T. et al.) 157–181 (Cambridge University Press, 2007).
doi: 10.1017/CBO9780511546396.007
von Dawans, B. & Heinrichs, M. Physiologische Stressreaktionen. In Handbuch Stressregulation und Sport (eds Fuchs, R. & Gerber, M.) 67–78 (Springer, 2018).
doi: 10.1007/978-3-662-49322-9_3
Landis, C. (1930) Walter B. Cannon Bodily changes in pain, hunger, fear and rage. (2nd ed., revised and enlarged.) New York: Appleton, 1929. Pp. xvi+404. Pedagog. Semin. J. Genet. Psychol. 38, 527–531. https://doi.org/10.1080/08856559.1930.10532290
Selye, H. A syndrome produced by diverse nocuous agents. Nature 138, 32. https://doi.org/10.1038/138032a0 (1936).
doi: 10.1038/138032a0
Kasos, K. et al. Obimon: An open-source device enabling group measurement of electrodermal activity. Psychophysiology 56, e13374. https://doi.org/10.1111/psyp.13374 (2019).
doi: 10.1111/psyp.13374
pubmed: 30950524
Kapp, D. et al. Evaluation of environmental effects on the measurement of electrodermal activity under real-life conditions. In 48th DGBMT Annual Conference Vol. 59 (ed. de Gruyter, W.) S255–S258 (Bostion, 2014).
Bota, P., Wang, C., Fred, A. et al. A wearable system for electrodermal activity data acquisition in collective experience assessment. In Proceedings of the 22nd International Conference on Enterprise Information Systems. 606–613 (SCITEPRESS—Science and Technology Publications, 2020)
(2019) Apparatus for electrodermal activity measurement with current compensation
Engelniederhammer, A., Papastefanou, G. & Xiang, L. Crowding density in urban environment and its effects on emotional responding of pedestrians: Using wearable device technology with sensors capturing proximity and psychophysiological emotion responses while walking in the street. J. Hum. Behav. Soc. Environ. 29, 630–646. https://doi.org/10.1080/10911359.2019.1579149 (2019).
doi: 10.1080/10911359.2019.1579149
LaJeunesse, S. et al. measuring pedestrian level of stress in urban environments: Naturalistic walking pilot study. Transp. Res. Rec. 2675, 109–119. https://doi.org/10.1177/03611981211010183 (2021).
doi: 10.1177/03611981211010183
Ogden, R. S. et al. The psychophysiological mechanisms of real-world time experience. Sci. Rep. 12, 12890. https://doi.org/10.1038/s41598-022-16198-z (2022).
doi: 10.1038/s41598-022-16198-z
pubmed: 35902608
pmcid: 9330997
Mudassar M, Kalatian A, Farooq B (2021) Analysis of pedestrian stress level using GSR sensor in virtual immersive reality
Beermann, M. & Sieben, A. Waiting behavior and arousal in different levels of crowd density: A psychological experiment with a “Tiny Box”. J. Adv. Transp. 2022, 1–14. https://doi.org/10.1155/2022/7245301 (2022).
doi: 10.1155/2022/7245301
Bigazzi, A. et al. Physiological markers of traffic-related stress during active travel. Transp. Res. F Traffic Psychol. Behav. 84, 223–238. https://doi.org/10.1016/j.trf.2021.12.003 (2022).
doi: 10.1016/j.trf.2021.12.003
Chandler, P. & Sweller, J. The split-attention effect as a factor in the design of instruction. Br. J. Educ. Psychol. 62, 233–246. https://doi.org/10.1111/j.2044-8279.1992.tb01017.x (1992).
doi: 10.1111/j.2044-8279.1992.tb01017.x
Armougum, A. et al. Physiological investigation of cognitive load in real-life train travelers during information processing. Appl. Ergon. 89, 103180. https://doi.org/10.1016/j.apergo.2020.103180 (2020).
doi: 10.1016/j.apergo.2020.103180
pubmed: 32763451
Taylor, S. et al. Automatic identification of artifacts in electrodermal activity data. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 1934–1937. https://doi.org/10.1109/EMBC.2015.7318762 (2015).
doi: 10.1109/EMBC.2015.7318762
pubmed: 26736662
Gashi, S. et al. Detection of artifacts in ambulatory electrodermal activity data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1–31. https://doi.org/10.1145/3397316 (2020).
doi: 10.1145/3397316
Schumm, J. et al. Effect of movements on the electrodermal response after a startle event. Methods Inf. Med. 47, 186–191. https://doi.org/10.3414/me9108 (2008).
doi: 10.3414/me9108
pubmed: 18473082
Posada-Quintero, H. F. et al. Time-varying analysis of electrodermal activity during exercise. PLoS ONE 13, e0198328. https://doi.org/10.1371/journal.pone.0198328 (2018).
doi: 10.1371/journal.pone.0198328
pubmed: 29856815
pmcid: 5983430
Seyfried, A. et al. The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. 2005, P10002–P10002. https://doi.org/10.1088/1742-5468/2005/10/P10002 (2005).
doi: 10.1088/1742-5468/2005/10/P10002
Armougum, A. et al. Virtual reality: A new method to investigate cognitive load during navigation. J. Environ. Psychol. 65, 101338. https://doi.org/10.1016/j.jenvp.2019.101338 (2019).
doi: 10.1016/j.jenvp.2019.101338
Kretz T (2019) An overview of fundamental diagrams of pedestrian dynamics. Unpublished
movisens GmbH (2023) EDA- und Aktivitätssensor - EdaMove 4 - movisens GmbH. https://www.movisens.com/de/produkte/eda-sensor/ . Accessed 26 Apr 2023
Topoglu, Y. et al. Electrodermal activity in ambulatory settings: A narrative review of literature. In Advances in Neuroergonomics and Cognitive Engineering Vol. 953 (ed. Ayaz, H.) 91–102 (Springer International Publishing, 2020).
doi: 10.1007/978-3-030-20473-0_10
Benedek, M. & Kaernbach, C. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47, 647–658. https://doi.org/10.1111/j.1469-8986.2009.00972.x (2010).
doi: 10.1111/j.1469-8986.2009.00972.x
pubmed: 20230512
pmcid: 2904901
Kasos, K. et al. Bilateral comparison of traditional and alternate electrodermal measurement sites. Psychophysiology 57, e13645. https://doi.org/10.1111/psyp.13645 (2020).
doi: 10.1111/psyp.13645
pubmed: 32931044
Greco, A. et al. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63, 797–804. https://doi.org/10.1109/TBME.2015.2474131 (2016).
doi: 10.1109/TBME.2015.2474131
pubmed: 26336110
Makowski, D. et al. NeuroKit2: A python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696. https://doi.org/10.3758/s13428-020-01516-y (2021).
doi: 10.3758/s13428-020-01516-y
pubmed: 33528817
Beermann M (2023) The relationship between pedestrian density, walking speed and psychological stress: Examining physiological arousal in crowded situations. (In Press).
Posada-Quintero, H. F. & Chon, K. H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors (Basel) 20, 479. https://doi.org/10.3390/s20020479 (2020).
doi: 10.3390/s20020479
pubmed: 31952141
Posada-Quintero, H. F. et al. Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann. Biomed. Eng. 44, 3124–3135. https://doi.org/10.1007/s10439-016-1606-6 (2016).
doi: 10.1007/s10439-016-1606-6
pubmed: 27059225
Boucsein, W. in Elektrodermale Aktivität: Grundlagen, Methoden und Anwendungen. (Springer, Berlin, Heidelberg, 1998).
Boomers, A. K., Boltes, M., Adrian, J. et al. Pedestrian crowd management experiments: A data guidance paper. Collective Dynamics. (In preparation).
Buchmüller, S., Weidmann, U. Parameters of pedestrians, pedestrian traffic and walking facilities. ETH Zurich (2006)
Paetzke, S., Boltes, M. & Seyfried, A. Influence of gender composition in pedestrian single-file experiments. Appl. Sci. 13, 5450. https://doi.org/10.3390/app13095450 (2023).
doi: 10.3390/app13095450