Prediction of heavy metals in polluted mangrove soils in Brazil with the highest reported levels of mercury using near-infrared spectroscopy.
Chemometrics
Environmental quality
Estuary
Trace elements
Journal
Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
19
05
2023
accepted:
26
07
2023
medline:
30
10
2023
pubmed:
22
8
2023
entrez:
21
8
2023
Statut:
ppublish
Résumé
Infrared reflectance spectroscopy has demonstrated potential as a tool for monitoring and preventing contamination in different environments. The objective of this study was to evaluate the usage of near-infrared spectroscopy for predicting heavy-metal contamination in mangrove soils from the Botafogo River estuary located in Pernambuco State, Northeastern Brazil. These soils exhibit the highest mercury (Hg) levels ever reported for Brazilian mangrove soils. Sixty-one samples (obtained at depths ranging from 0 to 5 cm) were collected and measured using near-infrared (1000-2500 nm) reflectance spectroscopy. Preprocessing methods were applied, and partial least squares regression was used to build prediction models for attributes such as clay content, soil organic matter (SOM), pH, Eh, and concentrations of Cr, Cu, Hg, Ni, Pb, and Zn. The models were evaluated using root mean squared error (RMSE), the adjusted coefficient of determination (R
Identifiants
pubmed: 37605089
doi: 10.1007/s10653-023-01717-2
pii: 10.1007/s10653-023-01717-2
doi:
Substances chimiques
Mercury
FXS1BY2PGL
Clay
T1FAD4SS2M
Lead
2P299V784P
Soil Pollutants
0
Metals, Heavy
0
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8337-8352Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Abbas, O., Dardenne, P., & Baeten, V. (2012). Near-Infrared, Mid-Infrared, and Raman Spectroscopy. Chemical Analysis of Food: Techniques and Applications. https://doi.org/10.1016/B978-0-12-384862-8.00003-0
doi: 10.1016/B978-0-12-384862-8.00003-0
Arújo, P. R. M.; Biondi, C. M.; Nascimento, C. W. A. do.; Silva, F. B. V. da.; Alvarez, A. M. (2019). Bioavailability and sequential extraction of mercury in soils and organisms of a mangrove contaminated by a chlor-alkali plant. Ecotoxicology and Environmental Safety, 183 (109469). https://doi.org/10.1016/j.ecoenv.2019.109469
Araújo, P. R. M.; Biondi, C. M.; Nascimento, C. W. A. do.; Silva, F. B. V. da.; Silva, W. R. da.; Silva, F. L. da.; Ferreira, D. K. de. M. (2021). Assessing the spatial distribution and ecologic and human health risks in mangrove soils polluted by Hg in northeastern Brazil. Chemosphere, 266 (129019). https://doi.org/10.1016/j.chemosphere.2020.129019
Araújo, P. R. M.; Biondi, C. M.; Nascimento, C. W. A. do.; Silva, F. B. V. da.; Ferreira, T. O.; Alcântara, S. F. de. (2022). Geospatial modeling and ecological and human health risk assessments of heavy metals in contaminated mangrove soils. Marine Pollution Bulletin, 177 (113489). https://doi.org/10.1016/j.marpolbul.2022.113489
Armenta, S., & de la Guardia, M. (2014). Vibrational spectroscopy in soil and sediment analysis. Trends in Environmental Analytical Chemistry, 2, 43–52. https://doi.org/10.1016/j.teac.2014.05.001
doi: 10.1016/j.teac.2014.05.001
Asgari, N., Ayoubi, S., Demattê, J. A. M., & Dotto, A. C. (2020). Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength. Journal of Mountain Science, 17, 1636–1651. https://doi.org/10.1007/s11629-019-5789-9
doi: 10.1007/s11629-019-5789-9
Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2011). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India. Environmental Geochemistry and Health, 34, 27–42. https://doi.org/10.1007/s10653-011-9388-0
doi: 10.1007/s10653-011-9388-0
Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43, 772–777. https://doi.org/10.1366/0003702894202201
doi: 10.1366/0003702894202201
Barra, I., Haefele, S., Sakrabani, R., & Kebede, F. (2021). Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advancese—A review. Trends in Analytical Chemistry, 135 (116166). https://doi.org/10.1016/j.trac.2020.116166
doi: 10.1016/j.trac.2020.116166
Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environment International, 48, 84–101. https://doi.org/10.1016/j.envint.2012.07.008
doi: 10.1016/j.envint.2012.07.008
Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.; McBratney, A. (2010). Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9) 1073–1081. https://doi.org/10.1016/j.trac.2010.05.006
Bernardino, A. F., Nóbrega, G. N., & Ferreira, T. O. (2021). Consequences of terminating mangrove’s protection in Brazil. Marine Policy, 125 (104389). https://doi.org/10.1016/j.marpol.2020.104389
doi: 10.1016/j.marpol.2020.104389
Bing, H., Zhou, J., Wu, Y., Wang, X., Sun, H., & Li, R. (2016). Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environmental Pollution, 214, 485–496. https://doi.org/10.1016/j.envpol.2016.04.062
doi: 10.1016/j.envpol.2016.04.062
Biyada, S., Merzouki, M., Elkarrach, K., & Benlemlih, M. (2020). Spectroscopic characterization of organic matter transformation during composting of textile solid waste using UV-Visible spectroscopy, Infrared spectroscopy and X-ray diffraction (XRD). Microchemical Journal, 159 (105314). https://doi.org/10.1016/j.microc.2020.105314
doi: 10.1016/j.microc.2020.105314
Camargo, L. A., Marques Júnior, J., Barrón, V., Alleoni, L. R. F., Barbosa, R. S., & Pereira, G. T. (2015). Mapping of clay, iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy. Geoderma, 251–252, 124–132. https://doi.org/10.1016/j.geoderma.2015.03.027
doi: 10.1016/j.geoderma.2015.03.027
Camargo, L. A., Marques Júnior, J., Barrón, V., Alleoni, L. R. F., Pereira, G. T., Texeira, D. D. B., & Souza Bahia, A. S. R. (2018). Predicting potentially toxic elements in tropical soils from iron oxides, magnetic susceptibility and diffuse reflectance spectra. CATENA, 165, 503–515. https://doi.org/10.1016/j.catena.2018.02.030
doi: 10.1016/j.catena.2018.02.030
Cheng, H., Shen, R., Chen, Y., Wan, Q., Shi, T., Wang, J., Wan, Y., Hong, Y., & Li, X. (2019). Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma, 336, 59–67. https://doi.org/10.1016/j.geoderma.2018.08.010
doi: 10.1016/j.geoderma.2018.08.010
Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research Solid Earth, 89, 6329–6340. https://doi.org/10.1029/JB089iB07p06329
doi: 10.1029/JB089iB07p06329
Coblinski, J. A., Giasson, É., Demattê, J. A. M., Dotto, A. C., Costa, J. J. F., & Vasat, R. (2020). Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. CATENA, 189 (104485). https://doi.org/10.1016/j.catena.2020.104485
doi: 10.1016/j.catena.2020.104485
Davies, B. E. (1974). Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal, 38(1), 150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046x
doi: 10.2136/sssaj1974.03615995003800010046x
de Santana, F. B., de Souza, A. M., & Poppi, R. J. (2018). Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 191(454), 462. https://doi.org/10.1016/j.saa.2017.10.052
doi: 10.1016/j.saa.2017.10.052
Debaene, G., Niedzwiecki, J., Pecio, A., & Zurek, A. (2014). Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale. Geoderma, 214–215, 114–125. https://doi.org/10.1016/j.geoderma.2013.09.022
doi: 10.1016/j.geoderma.2013.09.022
Dhanoa, M. S.; Lister, S. J.; Sanderson, R.; Barnes, R. J. (1994). The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2, 43–47. https://doi.org/10.1255/jnirs.30
Dotto, A. C., Dalmolin, R. S. D., Caten, A. T., & Grunwald, S. (2018). A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma, 314, 262–274. https://doi.org/10.1016/j.geoderma.2017.11.006
doi: 10.1016/j.geoderma.2017.11.006
Dotto, A. C., Dalmolin, R. S. D., Grnwald, S., Ten Caten, A., & Pereira Filho, W. (2017). Two preprocessing techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy. Soil and Tillage Research, 172, 59–68. https://doi.org/10.1016/j.still.2017.05.008
doi: 10.1016/j.still.2017.05.008
Douglas, R. K., Nawar, S., Alamar, M. C., Coulon, F., & Mouazen, A. M. (2018). Rapid detection of alkanes and polycyclic aromatic hydrocarbons in oil-contaminated soil with visible near-infrared spectroscopy. European Journal of Soil Science, 70(1), 140–150. https://doi.org/10.1111/ejss.12567
doi: 10.1111/ejss.12567
Elturk, M., Abdullah, R., Zakaria, R. Z. M., & Bakar, N. K. A. (2019). Heavy metal contamination in mangrove sediments in Klang estuary, Malaysia: Implication of risk assessment. Estuarine, Coastal and Shelf Science, 226 (106266). https://doi.org/10.1016/j.ecss.2019.106266
doi: 10.1016/j.ecss.2019.106266
Gadkar, N. S., Nayak, G. N., & Nasnodkar, M. R. (2019). Assessment of metal enrichment and bioavailability in mangrove and mudflat sediments of the tropical (Zuari) estuary, west coast of India. Environmental Science and Pollution Research, 26, 24998–25011. https://doi.org/10.1007/s11356-019-05733-7
doi: 10.1007/s11356-019-05733-7
Gholizadeh, A., Carmon, N., Klement, A., Ben-Dor, E., & Boruvka, L. (2017). Agricultural soil spectral response and properties assessment: Effects of measurement protocol and data mining technique. Remote Sensing, 9(10), 1078. https://doi.org/10.3390/rs9101078
doi: 10.3390/rs9101078
Han, A., Lu, X., Qing, S., Bao, Y., Bao, Y., Ma, Q., Liu, X., & Zhang, J. (2021). Rapid Determination of Low Heavy Metal Concentrations in Grassland Soils around Mining Using Vis–NIR Spectroscopy: A Case Study of Inner Mongolia, China. Sensors, 21 (3220). https://doi.org/10.3390/s21093220
doi: 10.3390/s21093220
Haris, H., Looi, L. J., Aris, A. Z., Mokhtar, N. F., Ayob, N. A. A., Yusoff, F. M., Salleh, A. B., & Praveena, S. M. (2017). Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environmental Geochemistry and Health, 39, 1259–1271. https://doi.org/10.1007/s10653-017-9971-0
doi: 10.1007/s10653-017-9971-0
Horta, A., Malone, B., Stoskmann, U., Minasny, B., Bishop, T. F. A., Macbratney, A. B., Pallasser, R., Pallasser, R., & Pozza, L. (2015). Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma, 241–242, 180–209. https://doi.org/10.1016/j.geoderma.2014.11.024
doi: 10.1016/j.geoderma.2014.11.024
INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL (INMETRO). Orientação sobre validação de métodos analíticos (DOQ-CGCRE-008). Brasília, 2010. 20p. (revisão 3).
Jia, Z., Li, S., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8, 3256. https://doi.org/10.1038/s41598-018-21569-6
doi: 10.1038/s41598-018-21569-6
Kleinebecker, T., Poellen, M. D. M., Smolders, A. J. P., Lamers, L. P. M., & Holzel, N. (2013). Fast and inexpensive detection of total and extractable element concentrations in aquatic sediments using near-infrared reflectance spectroscopy (NIRS). PLoS ONE. https://doi.org/10.1371/journal.pone.0070517
doi: 10.1371/journal.pone.0070517
Kooistra, L., Wehrens, R., Leuven, R. S. E., & Buydens, L. M. (2001). Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Analytica Chimica Acta, 446, 97–105. https://doi.org/10.1016/S0003-2670(01)01265-X
doi: 10.1016/S0003-2670(01)01265-X
Kopackova, V., Bem-dor, E., Carmon, N., & Notesco, G. (2017). Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine. Remote Sensing, 9(2), 134. https://doi.org/10.3390/rs9020134
doi: 10.3390/rs9020134
Kuang, B., & Mouazen, A. M. (2011). Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science, 62, 629–636. https://doi.org/10.1111/j.1365-2389.2011.01358.x
doi: 10.1111/j.1365-2389.2011.01358.x
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28, 1–26. https:doi.org/ https://doi.org/10.18637/jss.v028.i05
Kühnel, A., & Bogner, C. (2017). In-situ prediction of soil organic carbon by vis-NIR spectroscopy: An efficient use of limited field data. European Journal of Soil Science, 68(5), 689–702. https://doi.org/10.1111/ejss.12448
doi: 10.1111/ejss.12448
Kulkarni, R., Deobagkar, D., & Zinjarde, S. (2018). Metals in mangrove ecosystems and associated biota: A global perspective. Ecotoxicology and Environmental Safety, 153, 215-228. https://doi.org/10.1016/j.ecoenv.2018.02.021
doi: 10.1016/j.ecoenv.2018.02.021
Li, X.; Shen, Z.; Wai, O. W. H.; Li, Y. (2000).Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chemical Speciation & Bioavailability, 12, 17–25. https:doi.org/ https://doi.org/10.3184/095422900782775607
Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255–268.
doi: 10.2307/2532051
Liu, J., Zhang, Y., Wang, H., & Du, Y. (2018). Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 199, 43–49. https://doi.org/10.1016/j.saa.2018.03.040
doi: 10.1016/j.saa.2018.03.040
Maia, A. J.; Silva, Y. J. A. B. da.; Nascimento, C. W. A. do.; Veras, G.; Escobar, M. e. O.; Cunha, C. S. M.; Silva, Y. J. A. B. da.; Nascimento, R. C.; Pereira, L. H. de. S. (2020). Near-infrared spectroscopy for the prediction of rare earth elements in soils from the largest uranium-phosphate deposit in Brazil using PLS, iPLS, and iSPA-PLS models. Environmental Monitoring and Assessment, 192, 675. https://doi.org/10.1007/s10661-020-08642-2
Majumdar, J., Biswas, J. K., Santra, S. C., Ramanathan, A. L., & Tack, F. M. G. (2023). Sedimentation of metals in Sundarban mangrove ecosystem: Dominant drivers and environmental risks. Environmental Geochemistry and Health, 45, 1555–1572. https://doi.org/10.1007/s10653-022-01277-x
doi: 10.1007/s10653-022-01277-x
Marchand, C., Fernandez, J. M., Moreton, B., Landi, L., Lalier-Verges, E., & Baltzer, F. (2012). The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia). Chemical Geology, 300–301, 70–80. https://doi.org/10.1016/j.chemgeo.2012.01.018
doi: 10.1016/j.chemgeo.2012.01.018
Marchand, C., Lallier-Verges, E., Baltzer, F., Albérica, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98, 1–17. https://doi.org/10.1016/j.marchem.2005.06.001
doi: 10.1016/j.marchem.2005.06.001
Minasny, B., & Mcbratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009
doi: 10.1016/j.cageo.2005.12.009
Mohamed, E. S., Saleh, A. M., Belal, A. B., & Gad, A. (2018). Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Science, 21, 1–14. https://doi.org/10.1016/j.ejrs.2017.02.001
doi: 10.1016/j.ejrs.2017.02.001
Nóbrega, G. N.; Ferreira, T. O.; Artur, A. G.; de Mendonça, E. S.; de O. Leão, R. A.; Teixeira, A. S.; Otero, X. L. (2014). Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region. Journal of Soils and Sediments, 15, 282–291. https://doi.org/10.1007/s11368-014-1019-9
Nóbrega, G. N., Ferreira, T. O., Romero, R. E., Marques, A. G. B., & Otero, X. L. (2013). Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environmental Monitoring and Assessment, 185, 7393–7407. https://doi.org/10.1007/s10661-013-3108-4
doi: 10.1007/s10661-013-3108-4
Noronha-D’Melo, C. A., & Nayak, G. N. (2016). Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India. Marine Pollution Bulletin, 110(1), 221–230. https://doi.org/10.1016/j.marpolbul.2016.06.059
doi: 10.1016/j.marpolbul.2016.06.059
Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Analytica Chimica Acta, 1026, 8–36. https://doi.org/10.1016/j.aca.2018.04.004
doi: 10.1016/j.aca.2018.04.004
Romero, D. J., Nóbrega, G. N., Otero, X. L., & Ferreira, T. O. (2017). Diffuse reflectance spectroscopy (Vis-Nir-Swir) as a promising tool for blue carbon quantification in mangrove soils: A case of study in tropical semiarid climatic conditions. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2017.04.0135
doi: 10.2136/sssaj2017.04.0135
Santos, M. V. S., da Silva Júnior, J. B., Melo, V. M. M., Sousa, D. S., Hadlich, G. M., & de Oliveira, O. M. C. (2021). Evaluation of metal contamination in mangrove ecosystems near oil refining areas using chemometric tools and geochemical indexes. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2021.112179
doi: 10.1016/j.marpolbul.2021.112179
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
doi: 10.1021/ac60214a047
Shi, T., Chen, Y., Liu, Y., & Wu, G. (2014). Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 265, 166–176. https://doi.org/10.1016/j.jhazmat.2013.11.059
doi: 10.1016/j.jhazmat.2013.11.059
Shin, H., Yu, J., Wang, L., Jeong, Y., & Kim, J. (2020). Spectral interference of heavy metal contamination on spectral signals of moisture content for heavy metal contaminated soils. IEEE Transactions on Geoscience and Remote Sensing, 58, 2266–2275. https://doi.org/10.1109/TGRS.2019.2946297
doi: 10.1109/TGRS.2019.2946297
Shin, J. H., Yu, J., Wang, L., Kim, J., Koh, S.-M., & Kim, S.-O. (2019). Spectral responses of heavy metal contaminated soils in the vicinity of a hydrothermal ore deposit: a case study of Boksu Mine, South Korea. IEEE Transactions on Geoscience and Remote Sensing, 57, 4092–4106. https://doi.org/10.1109/TGRS.2018.2889748
doi: 10.1109/TGRS.2018.2889748
Stenberg, B., Viscarra Rossel, R., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107, 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7
doi: 10.1016/S0065-2113(10)07005-7
Stevens, B.; Ramirez-Lopes, L. (2020) An introduction to the prospectr package. R package Vignette.
Sun, W., Zhang, X., Zou, B., & Wu, T. (2017). Exploring the potential of spectral classification in estimation of soil contaminant elements. Remote Sensing. https://doi.org/10.3390/rs9060632
doi: 10.3390/rs9060632
Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H. (2018). Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environmental Pollution, 241, 938–949. https://doi.org/10.1016/j.envpol.2018.05.050
doi: 10.1016/j.envpol.2018.05.050
Terra, F. S., Demattê, J. A., & Rossel, R. A. V. (2015). Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma, 255, 81–93. https://doi.org/10.1016/j.geoderma.2015.04.017
doi: 10.1016/j.geoderma.2015.04.017
Todorova, M., Mouazen, A. M., Lange, H., & Atanassova, S. (2014). Potential of near infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size. Water, Air, & Soil Pollution, 225 (2036). https://doi.org/10.1007/s11270-014-2036-4
doi: 10.1007/s11270-014-2036-4
USEPA (United States Environmental Protection Agency) (2007). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Retrieved January 20, 2022, from https://www.epa.gov/epawaste/hazard/testmethods/%20sw846/pdfs/%203051a.pdf
Viscarra Rossel, R. A., Walvoort, D. J. J., Macbratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007
doi: 10.1016/j.geoderma.2005.03.007
Wan, D., Zhang, N., Chen, W., Cai, P., Zheng, L., & Huang, Q. (2018). Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-3173-x
doi: 10.1007/s11356-018-3173-x
Wang, J., Mi, W., Song, P., Xie, H., Zhu, L., & Wang, J. (2018). Cultivation ages effect on soil physicochemical properties and heavy metal accumulation in greenhouse soils. Chinese Geographical Science, 28, 717–726. https://doi.org/10.1007/s11769-018-0980-4
doi: 10.1007/s11769-018-0980-4
Ward, R. D.; Lacerda, L. D. de.; Cerqueira, A. da. S.; Silva, V. H. M. C.; Hernandez, O. C. (2023). Vertical accretion rates of mangroves in northeast Brazil: Implications for future responses and management. Estuarine, Coastal and Shelf Science, 289 (108382). https://doi.org/10.1016/j.ecss.2023.108382
Wu, T., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., & Ma, H. (2007). A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Science Society of America Journal, 71(3), 918– 926. https://doi.org/10.2136/sssaj2006.0285
doi: 10.2136/sssaj2006.0285
Xiao, S., & He, Y. (2019). Application of near-infrared spectroscopy and multiple spectral algorithms to explore the effect of soil particle sizes on soil nitrogen detection. Molecules, 24(13), 2486. https://doi.org/10.3390/molecules24132486
doi: 10.3390/molecules24132486
Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geoaccumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470–471, 925–933. https://doi.org/10.1016/j.scitotenv.2013.10.017
doi: 10.1016/j.scitotenv.2013.10.017
Zhao, D., Wang, J., Jiang, X., Zhen, J., Miao, J., Wang, J., & Wu, G. (2022). Reflectance spectroscopy for assessing heavy metal pollution indices in mangrove sediments using XGBoost method and physicochemical properties. CATENA, 211, 105967. https://doi.org/10.1016/j.catena.2021.105967
doi: 10.1016/j.catena.2021.105967
Zhao, G., Ye, S., Yuan, H., Ding, X., & Wang, J. (2016). Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary. China. Environmental Science and Pollution Research, 24(3), 2966–2979. https://doi.org/10.1007/s11356-016-8003-4
doi: 10.1007/s11356-016-8003-4