Gut Microbiota Metabolites Mediate Bax to Reduce Neuronal Apoptosis via cGAS/STING Axis in Epilepsy.

Apoptosis Epilepsy Gut microbiota Short-chain fatty acids cGAS/STING axis

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
22 Aug 2023
Historique:
received: 21 03 2023
accepted: 25 07 2023
medline: 22 8 2023
pubmed: 22 8 2023
entrez: 21 8 2023
Statut: aheadofprint

Résumé

The beneficial effects of gut flora on reducing nerve cell apoptosis and inflammation and improving epilepsy (EP) symptoms have been reported, but the specific mechanism of action is still unclear. A series of in vitro and in vivo experiments revealed the relationship between gut microbiota metabolites and the cGAS/STING axis and their role in EP. These results suggest that antibiotic-induced dysbiosis of gut microbiota exacerbated epileptic symptoms, probiotic supplements reduced epileptic symptoms in mice. Antibiotics and probiotics altered the diversity and composition of gut microbiota. The changes in gut bacteria composition, such as in the abundance of Firmicutes, Bacteroidetes, Lactobacillus and Ruminococcus, were associated with the production of short-chain fatty acids (SCFA) in the gut. The concentrations of propionate, butyrate and isovalerate were changed after feeding antibiotics and probiotics, and the increase in butyrate levels reduced the expression of cGAS/STING in nerve cell further reduced Bax protein expression. The reduction of Bax protein attenuated the hippocampal neuron cell apoptosis in PTZ-induced EP and EP progression. Our findings provide new insights into the roles and mechanisms of action of the gut microbiota in attenuating EP symptoms and progression.

Identifiants

pubmed: 37605097
doi: 10.1007/s12035-023-03545-y
pii: 10.1007/s12035-023-03545-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Hunan Provincial Innovation Foundation for Postgraduate
ID : CX20221018
Organisme : Scientific Research Foundation of Hunan Provincial Education Department
ID : No. 22B0457

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Zack MM, Kobau R (2017) National and state estimates of the numbers of adults and children with active epilepsy - United States, 2015. MMWR Morb Mortal Wkly Rep 66:821–825. https://doi.org/10.15585/mmwr.mm6631a1
doi: 10.15585/mmwr.mm6631a1 pubmed: 28796763 pmcid: 5687788
Pottoo F et al (2020) Impact of adherence to antiepileptic medications on quality of life of epileptic patients in the Eastern Province of Saudi Arabia: a cross-sectional study. Imam J Appl Sci 5(1):1. https://doi.org/10.4103/ijas.ijas_14_19
doi: 10.4103/ijas.ijas_14_19
Viaud S et al (2015) Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ 22:199–214. https://doi.org/10.1038/cdd.2014.56
doi: 10.1038/cdd.2014.56 pubmed: 24832470
Tremlett H et al (2016) Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur J Neurol 23:1308–1321. https://doi.org/10.1111/ene.13026
doi: 10.1111/ene.13026 pubmed: 27176462 pmcid: 4955679
Forsyth CB et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6:e28032. https://doi.org/10.1371/journal.pone.0028032
doi: 10.1371/journal.pone.0028032 pubmed: 22145021 pmcid: 3228722
Hilton D et al (2014) Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127:235–241. https://doi.org/10.1007/s00401-013-1214-6
doi: 10.1007/s00401-013-1214-6 pubmed: 24240814
Cattaneo A et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019
doi: 10.1016/j.neurobiolaging.2016.08.019 pubmed: 27776263
Bagheri S, Heydari A, Alinaghipour A, Salami M (2019) Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav 95:43–50. https://doi.org/10.1016/j.yebeh.2019.03.038
doi: 10.1016/j.yebeh.2019.03.038 pubmed: 31026781
Augustin K et al (2018) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17:84–93. https://doi.org/10.1016/S1474-4422(17)30408-8
doi: 10.1016/S1474-4422(17)30408-8 pubmed: 29263011
Vendrik KEW et al (2020) Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol 10:98. https://doi.org/10.3389/fcimb.2020.00098
doi: 10.3389/fcimb.2020.00098 pubmed: 32266160 pmcid: 7105733
Shen S, Rui Y, Wang Y, Su J, Yu XF (2023) SARS-CoV-2, HIV, and HPV: convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 95:e28220. https://doi.org/10.1002/jmv.28220
doi: 10.1002/jmv.28220 pubmed: 36229923
Liu Z et al (2016) Direct activation of bax protein for cancer therapy. Med Res Rev 36:313–341. https://doi.org/10.1002/med.21379
doi: 10.1002/med.21379 pubmed: 26395559
Erttmann SF et al (2022) The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55(847–861):e810. https://doi.org/10.1016/j.immuni.2022.04.006
doi: 10.1016/j.immuni.2022.04.006
Somasekharan SP et al (2020) G3BP1-linked mRNA partitioning supports selective protein synthesis in response to oxidative stress. Nucleic Acids Res 48:6855–6873. https://doi.org/10.1093/nar/gkaa376
doi: 10.1093/nar/gkaa376 pubmed: 32406909 pmcid: 7337521
Gamdzyk M et al (2020) cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol 57:2600–2619. https://doi.org/10.1007/s12035-020-01904-7
doi: 10.1007/s12035-020-01904-7 pubmed: 32253733 pmcid: 7260114
Corda MG, Giorgi O, Longoni B, Orlandi M, Biggio G (1990) Decrease in the function of the gamma-aminobutyric acid-coupled chloride channel produced by the repeated administration of pentylenetetrazol to rats. J Neurochem 55:1216–1221. https://doi.org/10.1111/j.1471-4159.1990.tb03127.x
doi: 10.1111/j.1471-4159.1990.tb03127.x pubmed: 1697889
Membrez M et al (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22:2416–2426. https://doi.org/10.1096/fj.07-102723
doi: 10.1096/fj.07-102723 pubmed: 18326786
Khosravi A et al (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15:374–381. https://doi.org/10.1016/j.chom.2014.02.006
doi: 10.1016/j.chom.2014.02.006 pubmed: 24629343 pmcid: 4144825
Desbonnet L et al (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173. https://doi.org/10.1016/j.bbi.2015.04.004
doi: 10.1016/j.bbi.2015.04.004 pubmed: 25866195
Bercik P et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609. https://doi.org/10.1053/j.gastro.2011.04.052 . 609 e591-593
doi: 10.1053/j.gastro.2011.04.052 pubmed: 21683077
Lawley TD et al (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995. https://doi.org/10.1371/journal.ppat.1002995
doi: 10.1371/journal.ppat.1002995 pubmed: 23133377 pmcid: 3486913
Moller PL, Paerregaard A, Gad M, Kristensen NN, Claesson MH (2005) Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells. Inflamm Bowel Dis 11:814–819. https://doi.org/10.1097/01.mib.0000175906.77340.15
doi: 10.1097/01.mib.0000175906.77340.15 pubmed: 16116315
Gadjeva M, Paradis-Bleau C, Priebe GP, Fichorova R, Pier GB (2010) Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J Immunol 184:296–302. https://doi.org/10.4049/jimmunol.0900604
doi: 10.4049/jimmunol.0900604 pubmed: 19949109
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560 pubmed: 30423086 pmcid: 6129281
Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507 pubmed: 21903629 pmcid: 3198573
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
doi: 10.1038/nmeth.2604 pubmed: 23955772
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07
doi: 10.1128/AEM.00062-07 pubmed: 17586664 pmcid: 1950982
Ding X et al (2022) Intestinal flora composition determines microglia activation and improves epileptic episode progress. Front Cell Infect Microbiol 12:835217. https://doi.org/10.3389/fcimb.2022.835217
doi: 10.3389/fcimb.2022.835217 pubmed: 35356535 pmcid: 8959590
Wang Y et al (2020) The protective effects of 2’-Fucosyllactose against E. Coli O157 infection are mediated by the regulation of gut microbiota and the inhibition of pathogen adhesion. Nutrients 12(5):1284. https://doi.org/10.3390/nu12051284
doi: 10.3390/nu12051284 pubmed: 32369957 pmcid: 7282266
Rodriguez J et al (2020) Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 69:1975–1987. https://doi.org/10.1136/gutjnl-2019-319726
doi: 10.1136/gutjnl-2019-319726 pubmed: 32041744
Yuan X et al (2021) Short-chain fatty acids calibrate RARalpha activity regulating food sensitization. Front Immunol 12:737658. https://doi.org/10.3389/fimmu.2021.737658
doi: 10.3389/fimmu.2021.737658 pubmed: 34721398 pmcid: 8551578
Li D, Bai X, Jiang Y, Cheng Y (2021) Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brain Res Bull 168:25–35. https://doi.org/10.1016/j.brainresbull.2020.12.009
doi: 10.1016/j.brainresbull.2020.12.009 pubmed: 33359640
Li X et al (2022) 11beta-HSD1 participates in epileptogenesis and the associated cognitive impairment by inhibiting apoptosis in mice. J Transl Med 20:406. https://doi.org/10.1186/s12967-022-03618-x
doi: 10.1186/s12967-022-03618-x pubmed: 36064418 pmcid: 9446697
Ratiu JJ et al (2022) Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-beta selection thymocytes. Nat Commun 13:5901. https://doi.org/10.1038/s41467-022-33610-4
doi: 10.1038/s41467-022-33610-4 pubmed: 36202870 pmcid: 9537144
Sawada M et al (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5:320–329. https://doi.org/10.1038/ncb950
doi: 10.1038/ncb950 pubmed: 12652308
Huang SY et al (2018) Lactobacillus paracasei PS23 delays progression of age-related cognitive decline in Senescence Accelerated Mouse Prone 8 (SAMP8) mice. Nutrients 10(7):894. https://doi.org/10.3390/nu10070894
doi: 10.3390/nu10070894 pubmed: 30002347 pmcid: 6073302
Mathew OP et al (2019) Cellular effects of butyrate on vascular smooth muscle cells are mediated through disparate actions on dual targets, Histone Deacetylase (HDAC) activity and PI3K/Akt signaling network. Int J Mol Sci 20(12):2902. https://doi.org/10.3390/ijms20122902
doi: 10.3390/ijms20122902 pubmed: 31197106 pmcid: 6628026
Thangaraju M et al (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69:2826–2832. https://doi.org/10.1158/0008-5472.CAN-08-4466
doi: 10.1158/0008-5472.CAN-08-4466 pubmed: 19276343 pmcid: 3747834
Li MZ et al (2023) Lycopene attenuates Di(2-ethylhexyl) phthalate-induced mitochondrial damage and inflammation in kidney via cGAS-STING signaling. J Agric Food Chem 71:569–579. https://doi.org/10.1021/acs.jafc.2c08351
doi: 10.1021/acs.jafc.2c08351 pubmed: 36583613
Huang R et al (2022) Inhibition of the cGAS-STING pathway attenuates lung ischemia/reperfusion injury via regulating endoplasmic reticulum stress in alveolar epithelial type II cells of rats. J Inflamm Res 15:5103–5119. https://doi.org/10.2147/JIR.S365970
doi: 10.2147/JIR.S365970 pubmed: 36091334 pmcid: 9462969
Guo Y et al (2022) Intravitreal injection of mitochondrial DNA induces cell damage and retinal dysfunction in rats. Biol Res 55:22. https://doi.org/10.1186/s40659-022-00390-6
doi: 10.1186/s40659-022-00390-6 pubmed: 35659309 pmcid: 9164539

Auteurs

Jinxia Zhai (J)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.

Chao Wang (C)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Liang Jin (L)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Fangtao Liu (F)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.

Yinzhu Xiao (Y)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.

Hongfeng Gu (H)

Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.

Mingjie Liu (M)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China. lmj493570152@163.com.

Yongjun Chen (Y)

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China. 2212680954@qq.com.

Classifications MeSH