Immunological profile of mice immunized with a polyvalent virosome-based influenza vaccine.
Bronchoalveolar Lavage
Influenza A Virus, H1N1 Subtype
Influenza A Virus, H1N2 Subtype
Influenza A Virus, H3N2 Subtype
Influenza Vaccines
/ administration & dosage
Influenza, Human
/ immunology
Spleen
/ cytology
Vaccines, Combined
/ administration & dosage
Vaccines, Virosome
/ administration & dosage
Virosomes
/ ultrastructure
Humans
Animals
Mice
Influenza a virus
Nanovaccine
Seroprotection
Vaccination
Vaccine
Journal
Virology journal
ISSN: 1743-422X
Titre abrégé: Virol J
Pays: England
ID NLM: 101231645
Informations de publication
Date de publication:
21 08 2023
21 08 2023
Historique:
received:
24
05
2023
accepted:
11
08
2023
medline:
23
8
2023
pubmed:
22
8
2023
entrez:
22
8
2023
Statut:
epublish
Résumé
Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility. This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated. Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (> 4-fold rise in HI antibody titers, reaching a titer of ≥ 1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens. All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine.
Sections du résumé
BACKGROUND
Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility.
METHODS
This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated.
RESULTS
Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (> 4-fold rise in HI antibody titers, reaching a titer of ≥ 1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens.
CONCLUSIONS
All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine.
Identifiants
pubmed: 37605141
doi: 10.1186/s12985-023-02158-0
pii: 10.1186/s12985-023-02158-0
pmc: PMC10463652
doi:
Substances chimiques
Influenza Vaccines
0
Vaccines, Combined
0
Vaccines, Virosome
0
Virosomes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
187Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis. 2012;12(9):687–95.
pubmed: 22738893
doi: 10.1016/S1473-3099(12)70121-4
Ma W, Lager KM, Vincent AL, Janke BH, Gramer MR, Richt JA. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health. 2009;56(6–7):326–37.
pubmed: 19486316
doi: 10.1111/j.1863-2378.2008.01217.x
Van Reeth K, Ma W. Swine influenza virus vaccines: to change or not to change-that’s the question. Curr Top Microbiol Immunol. 2013;370:173–200.
pubmed: 22976350
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB et al. Swine Influenza A Viruses and the tangled relationship with humans. Cold Spring Harbor perspectives in medicine. 2021;11(3).
Rech RR, Gava D, Silva MC, Fernandes LT, Haach V, Ciacci-Zanella JR, et al. Porcine respiratory disease complex after the introduction of H1N1/2009 influenza virus in Brazil. Zoonoses Public Health. 2018;65(1):e155–e61.
pubmed: 29139241
doi: 10.1111/zph.12424
Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325(5937):197–201.
pubmed: 19465683
pmcid: 3250984
doi: 10.1126/science.1176225
Mancera Gracia JC, Pearce DS, Masic A, Balasch M. Influenza A virus in Swine: Epidemiology, Challenges and Vaccination strategies. Front Vet Sci. 2020;7:647.
pubmed: 33195504
pmcid: 7536279
doi: 10.3389/fvets.2020.00647
Tan GS, Leon PE, Albrecht RA, Margine I, Hirsh A, Bahl J, et al. Broadly-reactive neutralizing and non-neutralizing antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathog. 2016;12(4):e1005578.
pubmed: 27081859
pmcid: 4833315
doi: 10.1371/journal.ppat.1005578
Babiuk S, Masic A, Graham J, Neufeld J, van der Loop M, Copps J, et al. An elastase-dependent attenuated heterologous swine influenza virus protects against pandemic H1N1 2009 influenza challenge in swine. Vaccine. 2011;29(17):3118–23.
pubmed: 21382482
doi: 10.1016/j.vaccine.2011.02.069
de Jong JC, Heinen PP, Loeffen WL, van Nieuwstadt AP, Claas EC, Bestebroer TM, et al. Antigenic and molecular heterogeneity in recent swine influenza A(H1N1) virus isolates with possible implications for vaccination policy. Vaccine. 2001;19(31):4452–64.
pubmed: 11483271
doi: 10.1016/S0264-410X(01)00190-6
Tochetto C, Junqueira DM, Anderson TK, Gava D, Haach V, Cantao ME et al. Introductions of human-origin Seasonal H3N2, H1N2 and Pre-2009 H1N1 influenza viruses to Swine in Brazil. Viruses. 2023;15(2).
Vijaykrishna D, Poon LL, Zhu HC, Ma SK, Li OT, Cheung CL, et al. Reassortment of pandemic H1N1/2009 influenza a virus in swine. Science. 2010;328(5985):1529.
pubmed: 20558710
pmcid: 3569847
doi: 10.1126/science.1189132
Bosworth B, Erdman MM, Stine DL, Harris I, Irwin C, Jens M, et al. Replicon particle vaccine protects swine against influenza. Comp Immunol Microbiol Infect Dis. 2010;33(6):e99–e103.
pubmed: 21094422
doi: 10.1016/j.cimid.2010.05.002
Heinen PP, van Nieuwstadt AP, de Boer-Luijtze EA, Bianchi AT. Analysis of the quality of protection induced by a porcine influenza a vaccine to challenge with an H3N2 virus. Vet Immunol Immunopathol. 2001;82(1–2):39–56.
pubmed: 11557293
doi: 10.1016/S0165-2427(01)00342-7
Kappes MA, Sandbulte MR, Platt R, Wang C, Lager KM, Henningson JN, et al. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs. Vaccine. 2012;30(2):280–8.
pubmed: 22067263
doi: 10.1016/j.vaccine.2011.10.098
Masic A, Booth JS, Mutwiri GK, Babiuk LA, Zhou Y. Elastase-dependent live attenuated swine influenza a viruses are immunogenic and confer protection against swine influenza a virus infection in pigs. J Virol. 2009;83(19):10198–210.
pubmed: 19625412
pmcid: 2748057
doi: 10.1128/JVI.00926-09
Soema PC, Kompier R, Amorij JP, Kersten GF. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm biopharmaceutics: official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2015;94:251–63.
doi: 10.1016/j.ejpb.2015.05.023
Holzer B, Rijal P, McNee A, Paudyal B, Martini V, Clark B, et al. Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathog. 2021;17(3):e1009330.
pubmed: 33662023
pmcid: 7932163
doi: 10.1371/journal.ppat.1009330
Sistere-Oro M, Lopez-Serrano S, Veljkovic V, Pina-Pedrero S, Vergara-Alert J, Cordoba L, et al. DNA vaccine based on conserved HA-peptides induces strong immune response and rapidly clears influenza virus infection from vaccinated pigs. PLoS ONE. 2019;14(9):e0222201.
pubmed: 31553755
pmcid: 6760788
doi: 10.1371/journal.pone.0222201
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and antigenic variation of Influenza Virus Hemagglutinin: implications for design of Universal Vaccine Immunogens. J Infect Dis. 2019;219(Suppl1):38–S45.
doi: 10.1093/infdis/jiy696
Cai M, Gan P, Hu X, Mai Z, Ji C, Yi H, et al. Protective effect of bivalent H1N1 and H3N2 VLP vaccines against eurasian avian-like H1N1 and recent human-like H3N2 influenza viruses in a mouse model. Vet Microbiol. 2022;266:109370.
pubmed: 35217323
doi: 10.1016/j.vetmic.2022.109370
Schwartzman LM, Cathcart AL, Pujanauski LM, Qi L, Kash JC, Taubenberger JK. An Intranasal Virus-Like particle vaccine broadly protects mice from multiple subtypes of Influenza A Virus. mBio. 2015;6(4):e01044.
pubmed: 26199334
pmcid: 4513078
doi: 10.1128/mBio.01044-15
Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM, Benjamin E, et al. Structure and function analysis of an antibody recognizing all Influenza A Subtypes. Cell. 2016;166(3):596–608.
pubmed: 27453466
pmcid: 4967455
doi: 10.1016/j.cell.2016.05.073
Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. Swine influenza viruses a north american perspective. Adv Virus Res. 2008;72:127–54.
pubmed: 19081490
doi: 10.1016/S0065-3527(08)00403-X
Moser C, Amacker M, Zurbriggen R. Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev Vaccines. 2011;10(4):437–46.
pubmed: 21506642
doi: 10.1586/erv.11.15
Wilschut J. Influenza vaccines: the virosome concept. Immunol Lett. 2009;122(2):118–21.
pubmed: 19100779
doi: 10.1016/j.imlet.2008.11.006
Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, et al. The virosome concept for influenza vaccines. Vaccine. 2005;23(Suppl 1):26–38.
doi: 10.1016/j.vaccine.2005.04.026
de Jonge J, Schoen P, ter Veer W, Stegmann T, Wilschut J, Huckriede A. Use of a dialyzable short-chain phospholipid for efficient solubilization and reconstitution of influenza virus envelopes. Bba-Biomembranes. 2006;1758(4):527–36.
pubmed: 16630533
doi: 10.1016/j.bbamem.2006.03.011
Zhang J, Gauger PC. Isolation of Swine Influenza A Virus in cell cultures and Embryonated Chicken Eggs. Methods Mol Biol. 2020;2123:281–94.
pubmed: 32170695
doi: 10.1007/978-1-0716-0346-8_20
Killian ML. Hemagglutination Assay for Influenza Virus. Methods Mol Biol. 2020;2123:3–10.
pubmed: 32170676
doi: 10.1007/978-1-0716-0346-8_1
Zhang J, Harmon KM. RNA extraction from Swine samples and detection of Influenza A Virus in Swine by Real-Time RT-PCR. Methods Mol Biol. 2020;2123:295–310.
pubmed: 32170696
doi: 10.1007/978-1-0716-0346-8_21
de Jonge J, Leenhouts JM, Holtrop M, Schoen P, Scherrer P, Cullis PR, et al. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem J. 2007;405(1):41–9.
pubmed: 17355227
pmcid: 1925238
doi: 10.1042/BJ20061756
Baron LF, Fonseca FND, Maciag SS, Bellaver FAV, Ibeli AMG, Mores MAZ et al. Toltrazuril-Loaded Polymeric Nanocapsules as a Promising Approach for the Preventive Control of Coccidiosis in Poultry. Pharmaceutics. 2022;14(2).
Souza CK, Rajao DS, Sandbulte MR, Lopes S, Lewis NS, Loving CL, et al. The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine. 2018;36(41):6103–10.
pubmed: 30181048
doi: 10.1016/j.vaccine.2018.08.072
Kitikoon P, Gauger PC, Vincent AL. Hemagglutinin inhibition assay with swine sera. Methods Mol Biol. 2014;1161:295–301.
pubmed: 24899438
doi: 10.1007/978-1-4939-0758-8_24
Maciag SS, Bellaver FV, Bombassaro G, Haach V, Mores MAZ, Baron LF, et al. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci Rep. 2022;12(1):15630.
pubmed: 36115917
pmcid: 9482628
doi: 10.1038/s41598-022-20082-1
SAS. System for Microsoft Windows, Release 9.4. In: System for Microsoft Windows R, editor. 2002–2012. NC, USA2012.
Jung O, Smeets R, Hartjen P, Schnettler R, Feyerabend F, Klein M et al. Improved in Vitro Test Procedure for full Assessment of the cytocompatibility of degradable Magnesium based on ISO 10993-5/-12. Int J Mol Sci. 2019;20(2).
Silva-Santana G, Bax JC, Fernandes DCS, Bacellar DTL, Hooper C, Dias AASO, et al. Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus. Anim Model Exp Med. 2020;3(4):304–15.
doi: 10.1002/ame2.12139
Asadi K, Gholami A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: a review. Int J Biol Macromol. 2021;182:648–58.
pubmed: 33862071
pmcid: 8049750
doi: 10.1016/j.ijbiomac.2021.04.005
Moser C, Muller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12(7):779–91.
pubmed: 23885823
doi: 10.1586/14760584.2013.811195
Gluck R, Mischler R, Finkel B, Que JU, Scarpa B, Cryz SJ. Jr. Immunogenicity of new virosome influenza vaccine in elderly people. Lancet. 1994;344(8916):160–3.
pubmed: 7912766
doi: 10.1016/S0140-6736(94)92758-8
de Jonge J, Holtrop M, Wilschut J, Huckriede A. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs (vol 13, pg 995, 2006). Gene Ther. 2006;13(12):995.
doi: 10.1038/sj.gt.3302783
Stegmann T, Kamphuis T, Meijerhof T, Goud E, de Haan A, Wilschut J. Lipopeptide-adjuvanted respiratory syncytial virus virosomes: a safe and immunogenic non-replicating vaccine formulation. Vaccine. 2010;28(34):5543–50.
pubmed: 20600502
doi: 10.1016/j.vaccine.2010.06.041
Kheiri MT, Jamali A, Shenagari M, Hashemi H, Sabahi F, Atyabi F, et al. Influenza virosome/DNA vaccine complex as a new formulation to induce intra-subtypic protection against influenza virus challenge. Antivir Res. 2012;95(3):229–36.
pubmed: 22809863
doi: 10.1016/j.antiviral.2012.07.003
Ando S, Tsuge H, Mayumi T. Preparation of influenza virosome vaccine with muramyldipeptide derivative B30-MDP. J Microencapsul. 1997;14(1):79–90.
pubmed: 8994077
doi: 10.3109/02652049709056469
Huckriede A, Bungener L, Daemen T, Wilschut J. Influenza virosomes in Vaccine Development. Method Enzymol. 2003;373:74–91.
doi: 10.1016/S0076-6879(03)73005-5
Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines. 2007;6(5):711–21.
pubmed: 17931152
doi: 10.1586/14760584.6.5.711
Liu H, de Vries-Idema J, Ter Veer W, Wilschut J, Huckriede A. Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol. 2014;203(1):47–55.
pubmed: 24062182
doi: 10.1007/s00430-013-0313-2
Torrieri-Dramard L, Lambrecht B, Ferreira HL, Van den Berg T, Klatzmann D, Bellier B. Intranasal DNA vaccination induces potent mucosal and systemic Immune responses and cross-protective immunity against Influenza Viruses. Mol Ther. 2011;19(3):602–11.
pubmed: 20959813
doi: 10.1038/mt.2010.222
EMEA EAftEoMP-. Ad Hoc Working Party on Influenza Vaccines: summary record of meeting on the choice of strains for influenza vaccine for the 1995–1996 vaccination campaign. 1995.
Cusi MG, Lomagistro MM, Valassina M, Valensin PE, Gluck R. Immunopotentiating of mucosal and systemic antibody responses in mice by intranasal immunization with HLT-combined influenza virosomal vaccine. Vaccine. 2000;18(25):2838–42.
pubmed: 10812227
doi: 10.1016/S0264-410X(00)00072-4
Onodera T, Hosono A, Odagiri T, Tashiro M, Kaminogawa S, Okuno Y, et al. Whole-virion Influenza Vaccine recalls an early burst of High-Affinity memory B cell response through TLR Signaling. J Immunol. 2016;196(10):4172–84.
pubmed: 27053762
doi: 10.4049/jimmunol.1600046
Onodera T, Hashi K, Shukla RK, Miki M, Takai-Todaka R, Fujimoto A, et al. Immune-Focusing Properties of Virus-like particles improve protective IgA responses. J Immunol. 2019;203(12):3282–92.
pubmed: 31704880
pmcid: 6900486
doi: 10.4049/jimmunol.1900481
Abe T, Hemmi H, Miyamoto H, Moriishi K, Tamura S, Takaku H, et al. Involvement of the toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol. 2005;79(5):2847–58.
pubmed: 15709004
pmcid: 548444
doi: 10.1128/JVI.79.5.2847-2858.2005
Petrova G, Ferrante A, Gorski J. Cross-Reactivity of T cells and its role in the Immune System. Crit Rev Immunol. 2012;32(4):349–72.
pubmed: 23237510
pmcid: 3595599
doi: 10.1615/CritRevImmunol.v32.i4.50
Blom RAM, Amacker M, van Dijk RM, Moser C, Stumbles PA, Blank F et al. Pulmonary delivery of virosome-bound Antigen enhances Antigen-Specific CD4(+) T cell proliferation compared to liposome-bound or Soluble Antigen. Front Immunol. 2017;8.
Takamura S. Niches for the long-term maintenance of Tissue-Resident memory T cells. Front Immunol. 2018;9.
Ahrends T, Busselaar J, Severson TM, Babala N, de Vries E, Bovens A et al. CD4(+) T cell help creates memory CD8(+) T cells with innate and help-independent recall capacities. Nat Commun. 2019;10.
Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–U325.
pubmed: 21926977
pmcid: 3192229
doi: 10.1038/nm.2446
Wirth TC, Xue HH, Rai D, Sabel JT, Bair T, Harty JT, et al. Repetitive Antigen Stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity. 2010;33(1):128–40.
pubmed: 20619696
pmcid: 2912220
doi: 10.1016/j.immuni.2010.06.014
Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity. 2010;33(4):451–63.
pubmed: 21029957
pmcid: 3760154
doi: 10.1016/j.immuni.2010.10.008
Jacobson RM, Grill DE, Oberg AL, Tosh PK, Ovsyannikova IG, Poland GA. Profiles of influenza A/H1N1 vaccine response using hemagglutination-inhibition titers. Hum Vacc Immunother. 2015;11(4):961–9.
doi: 10.1080/21645515.2015.1011990
Wilson JR, Tzeng WP, Spesock A, Music N, Guo Z, Barrington R, et al. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin. Virology. 2014;458:114–24.
pubmed: 24928044
doi: 10.1016/j.virol.2014.04.011