Neurological and neuromuscular manifestations in patients with West Nile neuroinvasive disease, Belgrade area, Serbia, season 2022.

Movement Disorders Neuroinvasive disease Outcome West Nile virus

Journal

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175

Informations de publication

Date de publication:
22 Aug 2023
Historique:
received: 07 07 2023
accepted: 16 08 2023
medline: 22 8 2023
pubmed: 22 8 2023
entrez: 22 8 2023
Statut: aheadofprint

Résumé

We aimed to describe neurological manifestations and functional outcome at discharge in patients with West Nile neuroinvasive disease. This retrospective study enrolled inpatients treated in the University Clinic for Infectious and Tropical Diseases in Belgrade, Serbia, from 1 June until 31 October 2022. Functional outcome at discharge was assessed using modified Rankin scale. Among the 135 analyzed patients, encephalitis, meningitis and acute flaccid paralysis (AFP) were present in 114 (84.6%), 20 (14.8%), and 21 (15.6%), respectively. Quadriparesis/quadriplegia and monoparesis were the most frequent forms of AFP, present in 9 (6.7%) and 6 (4.4%) patients, respectively. Fourty-five (33.3%) patients had cerebellitis, 80 (59.3%) had rhombencephalitis, and 5 (3.7%) exhibited Parkinsonism. Ataxia and wide-based gait were present in 79 (58.5%) patients each. Fifty-one (37.8%) patients had tremor (41 (30.3%) had postural and/or kinetic tremor, 10 (7.4%) had resting tremor). Glasgow coma score (GCS) ≤ 8 and respiratory failure requiring mechanical ventilation developed in 39 (28.9%), and 33 (24.4%) patients, respectively. Quadriparesis was a risk factor for prolonged ventilator support (29.5 ± 16.8 vs. 12.4 ± 8.7 days, p = 0.001). At discharge, one patient with monoparesis recovered full muscle strength, whereas 8 patients with AFP were functionally dependent. Twenty-nine (21.5%) patients died. All of the succumbed had encephalitis, and 7 had quadriparesis. Ataxia, tremor and cognitive deficit persisted in 18 (16.9%), 15 (14.2%), and 22 (16.3%) patients at discharge, respectively. Age, malignancy, coronary disease, quadriparesis, mechanical ventilation, GCS ≤ 8 and healthcare-associated infections were risk factors for death (p = 0.001; p = 0.019; p = 0.004; p = 0.001; p < 0.001; p < 0.001, and p < 0.001, respectively).

Identifiants

pubmed: 37606743
doi: 10.1007/s10072-023-07025-y
pii: 10.1007/s10072-023-07025-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. Fondazione Società Italiana di Neurologia.

Références

Davis LE, DeBiasi R, Goade DE et al (2006) West Nile virus neuroinvasive disease. Ann Neurol 60:286–300. https://doi.org/10.1002/ana.20959
doi: 10.1002/ana.20959 pubmed: 16983682
Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814. https://doi.org/10.1056/nejm200106143442401
doi: 10.1056/nejm200106143442401 pubmed: 11407341
Ahmed S, Libman R, Wesson K et al (2000) Guillain-Barré syndrome: An unusual presentation of West Nile virus infection. Neurology 55:144–146. https://doi.org/10.1212/wnl.55.1.144
doi: 10.1212/wnl.55.1.144 pubmed: 10891928
Nichter CA, Pavlakis SG, Shaikh U et al (2000) Rhombencephalitis caused by West Nile fever virus. Neurology 55:153–153. https://doi.org/10.1212/wnl.55.1.153
doi: 10.1212/wnl.55.1.153 pubmed: 10891935
Popovic N, Milosevic B, Urosevic A et al (2014) Clinical characteristics and functional outcome of patients with West Nile neuroinvasive disease in Serbia. J Neurol 261(6):1104–1111. https://doi.org/10.1007/s00415-014-7318-7
doi: 10.1007/s00415-014-7318-7 pubmed: 24687895
Martinovic V, Kisic-Tepavcevic D, Kacar A et al (2019) Longitudinally extensive transverse myelitis in a patient infected with West Nile virus. Mult Scler Relat Disord 32:19–22. https://doi.org/10.1016/j.msard.2019.04.007
doi: 10.1016/j.msard.2019.04.007 pubmed: 31005826
Jani C, Walker A, Al Omari O et al (2021) Acute transverse myelitis in West Nile Virus, a rare neurological presentation. IDCases 24:e01104. https://doi.org/10.1016/j.idcr.2021.e01104
European Center for Disease Prevention and Control (ECDC) (2018) West Nile fever in Europe in 2018 - human cases compared to previous seasons, updated 23 November. In: www.ecdc.europa.eu . https://www.ecdc.europa.eu/en/publications-data/west-nile-fever-europe-2018-human-cases-compared-previous-seasons-updated-23 . Accessed 28 May 2023
European Center for Disease Prevention and Control (ECDC) (2017) Facts about West Nile fever. In: European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/west-nile-fever/facts . Accessed 28 May 2023
Greenlee JE, Carroll KC (1997) Cerebrospinal fluid in CNS Infections. Infections of the central nervous system. Lippincott-Raven Publishers, Philadelphia, pp 899–922
van Swieten JC, Koudstaal PJ, Visser MC et al (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607. https://doi.org/10.1161/01.str.19.5.604
doi: 10.1161/01.str.19.5.604 pubmed: 3363593
Bode AV, Sejvar JJ, Pape WJ et al (2006) West Nile virus disease: a descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003. Clin Infect Dis 42:1234–1240. https://doi.org/10.1086/503038
doi: 10.1086/503038 pubmed: 16586381
Lindsey NP, Erin Staples J, Lehman JA, Fischer M (2012) Medical risk factors for severe West Nile virus disease, United States, 2008–2010. Am J Trop Med Hyg 87:179–184. https://doi.org/10.4269/ajtmh.2012.12-0113
doi: 10.4269/ajtmh.2012.12-0113 pubmed: 22764311 pmcid: 3391046
Penn RG, Guarner J, Sejvar JJ et al (2006) Persistent neuroinvasive West Nile virus infection in an immunocompromised patient. Clin Infect Dis 42:680–683. https://doi.org/10.1086/500216
doi: 10.1086/500216 pubmed: 16447115
Santini M, Haberle S, Židovec-Lepej S et al (2022) Severe West Nile virus neuroinvasive disease: clinical characteristics, short- and long-term outcomes. Pathogens 11:52–52. https://doi.org/10.3390/pathogens11010052
doi: 10.3390/pathogens11010052 pubmed: 35056000 pmcid: 8779330
Sejvar JJ, Haddad MB, Tierney BC et al (2003) Neurologic manifestations and outcome of West Nile virus infection. JAMA 290:511. https://doi.org/10.1001/jama.290.4.511
doi: 10.1001/jama.290.4.511 pubmed: 12876094
Lenka A, Kamat A, Mittal SO (2019) Spectrum of movement disorders in patients with neuroinvasive West Nile virus infection. Mov Disord Clin Pract 6:426–433. https://doi.org/10.1002/mdc3.12806
doi: 10.1002/mdc3.12806 pubmed: 31392241 pmcid: 6660229
Tan K, Kianirad Y, Zadikoff C, Bega D (2017) Adult onset opsoclonus-myoclonus ataxia syndrome due to West Nile virus: two case reports. Neurology 88(16 Suppl):314
Sayao A-L, Suchowersky O, Al-Khathaami AM et al (2004) Calgary experience with West Nile virus neurological syndrome during the late summer of 2003. Can J Neurol Sci 31:194–203. https://doi.org/10.1017/s031716710005383x
doi: 10.1017/s031716710005383x pubmed: 15198443
Murray KO, Garcia MN, Rahbar MH, et al (2014) Survival analysis, long-term outcomes, and percentage of recovery up to 8 years post-infection among the Houston West Nile virus cohort. PLoS One 9:e102953. https://doi.org/10.1371/journal.pone.0102953
Kanagarajan K, Ganesh S, Alakhras M et al (2003) West Nile virus infection presenting as cerebellar ataxia and fever: case report. South Med J 96:600–601. https://doi.org/10.1097/01.smj.0000054912.04257.dc
doi: 10.1097/01.smj.0000054912.04257.dc pubmed: 12938789
Kooli I, Loussaif C, Brahim HB, et al (2017) West Nile virus (WNV) presenting as acute cerebellar ataxia in an immunocompetent patient. Rev Neurol (Paris) 173: https://doi.org/10.1016/j.neurol.2017.03.002
Jovanović Galović A, Weyer J, Jansen van Vuren P et al (2017) West Nile virus lineage 2 associated with human case in Republic of Serbia. Vector Borne Zoonotic Dis 17:780–783. https://doi.org/10.1089/vbz.2017.2141
doi: 10.1089/vbz.2017.2141 pubmed: 28976814
Young JJ, Haussig JM, Aberle SW, et al (2021) Epidemiology of human West Nile virus infections in the European Union and European Union enlargement countries, 2010 to 2018. Euro Surveill 26: https://doi.org/10.2807/1560-7917.es.2021.26.19.2001095
Hart J, Tillman G, Kraut MA, et al (2014) West Nile virus neuroinvasive disease: neurological manifestations and prospective longitudinal outcomes. BMC Infect Dis 14: https://doi.org/10.1186/1471-2334-14-248
Tilley PAG, Fox JD, Jayaraman GC, Preiksaitis JK (2006) Maculopapular rash and tremor are associated with West Nile fever and neurological syndromes. J Neurol Neurosurg Psychiatry 78:529–531. https://doi.org/10.1136/jnnp.2006.107862
doi: 10.1136/jnnp.2006.107862
Sejvar JJ, Bode AV, Marfin AA et al (2006) West Nile virus–associated flaccid paralysis outcome. Emerg Infect Dis 12:514–516. https://doi.org/10.3201/eid1203.050643
doi: 10.3201/eid1203.050643 pubmed: 16704798 pmcid: 3291435
Murray KO, Nolan MS, Ronca SE et al (2018) The Neurocognitive and MRI outcomes of West Nile virus infection: preliminary analysis using an external control group. Front Neurol 9:111. https://doi.org/10.3389/fneur.2018.00111
doi: 10.3389/fneur.2018.00111 pubmed: 29636722 pmcid: 5880927
Burton JM, Kern R, Halliday WD et al (2004) Neurological manifestations of West Nile virus infection. Can J Neurol Sci 31:185–193. https://doi.org/10.1017/s0317167100053828
doi: 10.1017/s0317167100053828 pubmed: 15198442
Robinson R, Shahida S, Madan N et al (2003) Transient parkinsonism in west nile virus encephalitis. Am J Med 115:252–253. https://doi.org/10.1016/s0002-9343(03)00291-2
doi: 10.1016/s0002-9343(03)00291-2 pubmed: 12935837
Pepperell CS, Rau N, Krajden S et al (2003) West Nile virus infection in 2002: morbidity and mortality among patients admitted to hospital in southcentral Ontario. CMAJ 168:1399–1405
pubmed: 12771068 pmcid: 155955
Shieh W-J, Guarner J, Layton M et al (2000) The role of pathology in an investigation of an outbreak of West Nile encephalitis in New York, 1999. Emerg Infect Dis 6:370–372. https://doi.org/10.3201/eid0604.000407
doi: 10.3201/eid0604.000407 pubmed: 10905969 pmcid: 2640902
Sejvar JJ, Bode AV, Marfin AA et al (2005) West Nile virus–associated flaccid paralysis. Emerg Infect Dis 11:1021–1027. https://doi.org/10.3201/eid1107.040991
doi: 10.3201/eid1107.040991 pubmed: 16022775 pmcid: 3371783
Leis AA, Stokic DS, Polk JL et al (2002) A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med 347:1279–1280. https://doi.org/10.1056/nejm2002c021587
doi: 10.1056/nejm2002c021587 pubmed: 12270971
Sejvar JJ, Leis AA, Stokic DS et al (2003) Acute flaccid paralysis and West Nile virus infection. Emerg Infect Dis 9:788–793. https://doi.org/10.3201/eid0907.030129
doi: 10.3201/eid0907.030129 pubmed: 12890318 pmcid: 3023428
Sejvar JJ (2014) Clinical manifestations and outcomes of West Nile virus infection. Viruses 6:606–623. https://doi.org/10.3390/v6020606
doi: 10.3390/v6020606 pubmed: 24509812 pmcid: 3939474
Doron S, Dashe JF, Adelman LS et al (2003) Histopathologically proven poliomyelitis with quadriplegia and loss of brainstem function due to West Nile virus infection. Clin Infect Dis 37:e74–e77. https://doi.org/10.1086/377177
doi: 10.1086/377177 pubmed: 12942423
Hawkes MA, Carabenciov ID, Wijdicks EFM, Rabinstein AA (2018) Outcomes in patients with severe West Nile neuroinvasive disease. Crit Care Med 46:e955–e958. https://doi.org/10.1097/ccm.0000000000003257
doi: 10.1097/ccm.0000000000003257 pubmed: 29985213
Hawkes MA, Carabenciov ID, Wijdicks EFM, Rabinstein AA (2018) Critical West Nile neuroinvasive disease. Neurocrit Care 29:47–53. https://doi.org/10.1007/s12028-017-0500-x
doi: 10.1007/s12028-017-0500-x pubmed: 29435806
Cao N, Ranganathan C, Kupsky WJ, Li J (2005) Recovery and prognosticators of paralysis in West Nile virus infection. J Neurol Sci 236:73–80. https://doi.org/10.1016/j.jns.2005.05.007
doi: 10.1016/j.jns.2005.05.007 pubmed: 15967468

Auteurs

Nataša Nikolić (N)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Jasmina Poluga (J)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Ivana Milošević (I)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Nevena Todorović (N)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.

Ana Filipović (A)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.

Boris Jegorović (B)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Nikola Mitrović (N)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Uroš Karić (U)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Ivana Gmizić (I)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.

Goran Stevanović (G)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Branko Milošević (B)

University Clinic for Infectious and Tropical Diseases of the University Clinical Centre of Serbia, Belgrade, Serbia. branko.milosevic@yahoo.com.
Faculty of Medicine, University of Belgrade, Belgrade, Serbia. branko.milosevic@yahoo.com.

Classifications MeSH