Simple chitin-based cell culture platform for production of biopharmaceuticals.


Journal

Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 19 01 2023
accepted: 19 07 2023
medline: 28 8 2023
pubmed: 22 8 2023
entrez: 22 8 2023
Statut: ppublish

Résumé

Gene therapy using viral vectors and antibody-based therapies continue to expand within the pharmaceutical market. We evaluated whether Cellhesion The results of Cell Counting Kit-8 assay and LDH assay revealed that Cellhesion Cellhesion

Identifiants

pubmed: 37606752
doi: 10.1007/s10529-023-03422-7
pii: 10.1007/s10529-023-03422-7
doi:

Substances chimiques

Biological Products 0
Chitin 1398-61-4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1265-1277

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73. https://doi.org/10.1038/nrmicro2240
doi: 10.1038/nrmicro2240 pubmed: 19966816
Faravelli S, Campioni M, Palamini M, Canciani A, Chiapparino A, Forneris F (2021) Optimized recombinant production of secreted proteins using human embryonic kidney (HEK293) cells grown in suspension. Bio Protoc 11(8):e3998. https://doi.org/10.21769/BioProtoc.3998
doi: 10.21769/BioProtoc.3998 pubmed: 34124299 pmcid: 8160536
Fliedl L, Grillari J, Voglauer RG (2015) Human cell lines for the production of recombinant proteins: on the horizon. N Biotechnol 32(6):673–679. https://doi.org/10.1016/j.nbt.2014.11.005
doi: 10.1016/j.nbt.2014.11.005 pubmed: 25529337
Genzel Y (2015) Designing cell lines for viral vaccine production: where do we stand? Biotechnol J 10(5):728–740. https://doi.org/10.1002/biot.201400388
doi: 10.1002/biot.201400388 pubmed: 25903999
Genzel Y, Olmer RM, Schäfer B, Reichl U (2006) Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 24(35–36):6074–6087. https://doi.org/10.1016/j.vaccine
doi: 10.1016/j.vaccine pubmed: 16781022
Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12(3):1876–1887. https://doi.org/10.3390/ijms12031876
doi: 10.3390/ijms12031876 pubmed: 21673928 pmcid: 3111639
Jelsch M, Roggo Y, Kleinebudde P, Krumme M (2021) Model predictive control in pharmaceutical continuous manufacturing: a review from a user’s perspective. Eur J Pharm Biopharm 159:137–142. https://doi.org/10.1016/j.ejpb.2021.01.003
doi: 10.1016/j.ejpb.2021.01.003 pubmed: 33429008
Kida K, Kanaki T, Gao S, Hatanaka D, Iwakami M, Liu S, Horikawa M, Ono M, Chang D (2022) A novel 3D culture system using a chitin-based polysaccharide material produces high-quality allogeneic human UCMSCs with dispersed sphere morphology. Cells 11(6):995. https://doi.org/10.3390/cells11060995
doi: 10.3390/cells11060995 pubmed: 35326446 pmcid: 8947357
Kim BG, Park HW (2016) Tetrahydrofolate increases suspension growth of dihydrofolate reductase-deficient Chinese hamster ovary DG44 cells in chemically defined media. Biotechnol Prog 32(6):1539–1546. https://doi.org/10.1002/btpr.2351
doi: 10.1002/btpr.2351 pubmed: 27578320
Kim ES, Kida K, Mok J, Seong Y, Jo SY, Kanaki T, Horikawa M, Kim KH, Kim TM, Park TS, Park J (2021) Cellhesion VP enhances the immunomodulating potential of human mesenchymal stem cell-derived extracellular vesicles. Biomaterials 271:120742. https://doi.org/10.1016/j.biomaterials.2021.120742
doi: 10.1016/j.biomaterials.2021.120742 pubmed: 33706111
Lee S (2017) Present and future for continuous manufacturing: FDA perspective. In: 3rd FDA/PQRI conference on advancing product quality. https://pqri.org/wp-content/uploads/2017/02/1-Lee-PQRI-for-CM-2017.pdf
Lennaertz A, Knowles S, Drugmand JC, Castillo J (2013) Viral vector production in the integrity
Li C, Samulski RJ (2020) Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21(4):255–272. https://doi.org/10.1038/s41576-019-0205-4
doi: 10.1038/s41576-019-0205-4 pubmed: 32042148
Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. Mabs 2(5):466–479. https://doi.org/10.4161/mabs.2.5.12720
doi: 10.4161/mabs.2.5.12720 pubmed: 20622510 pmcid: 2958569
Liang K, Luo H, Li Q (2023) Enhancing and stabilizing monoclonal antibody production by Chinese hamster ovary (CHO) cells with optimized perfusion culture strategies. Front Bioeng Biotechnol 11:1112349. https://doi.org/10.3389/fbioe.2023.1112349
doi: 10.3389/fbioe.2023.1112349 pubmed: 36741761 pmcid: 9895834
Marks DM (2003) Equipment design considerations for large scale cell culture. Cytotechnology 42(1):21–33. https://doi.org/10.1023/A:1026103405618
doi: 10.1023/A:1026103405618 pubmed: 19002925 pmcid: 3449506
Nam JH, Ermonval M, Sharfstein ST (2009) The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions. Cytotechnology 59(2):81–91. https://doi.org/10.1007/s10616-009-9196-x
doi: 10.1007/s10616-009-9196-x pubmed: 19412658 pmcid: 2698439
Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774. https://doi.org/10.1038/nrd3229
doi: 10.1038/nrd3229 pubmed: 20811384
Pollock J, Coffman J, Ho SV, Farid SS (2017) Integrated continuous bioprocessing: economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol Prog 33(4):854–866. https://doi.org/10.1002/btpr.2492
doi: 10.1002/btpr.2492 pubmed: 28480535 pmcid: 5575510
Rghei AD, Stevens BAY, Thomas SP, Yates JGE, McLeod BM, Karimi K, Susta L, Bridle BW, Wootton SK (2021) Production of adeno-associated virus vectors in cell stacks for preclinical studies in large animal models. J vis Exp. https://doi.org/10.3791/62727
doi: 10.3791/62727 pubmed: 34279499
Rodrigues ME, Costa AR, Fernandes P, Henriques M, Cunnah P, Melton DW, Azeredo J, Oliveira R (2013) Evaluation of macroporous and microporous carriers for CHO-K1 cell growth and monoclonal antibody production. J Microbiol Biotechnol 23(9):1308–1321. https://doi.org/10.4014/jmb.1304.04011
doi: 10.4014/jmb.1304.04011 pubmed: 23711520
Shamshina JL, Gurau G, Block LE, Hansen LK, Dingee C, Walters A, Rogers RD (2014) Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mater Chem B 2(25):3924–3936. https://doi.org/10.1039/c4tb00329b
doi: 10.1039/c4tb00329b pubmed: 32261644
Shao HJ, Lee YT, Chen CS, Wang JH, Young TH (2010) Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials 31(17):4695–4705. https://doi.org/10.1016/j.biomaterials.2010.02.037
doi: 10.1016/j.biomaterials.2010.02.037 pubmed: 20304482
Sousa MFQ, Silva MM, Giroux D, Hashimura Y, Wesselschmidt R, Lee R, Roldão A, Carrondo MJT, Alves PM, Serra M (2015) Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, vertical-wheel bioreactor system: impact of bioreactor design on performance of microcarrier-based cell culture processes. Biotechnol Prog 31(6):1600–1612. https://doi.org/10.1002/btpr.2158
doi: 10.1002/btpr.2158 pubmed: 26289142
Urquhart L (2020) Top companies and drugs by sales in 2019. Nature reviews drug discovery. https://www.nature.com/articles/d41573-020-00047-7
Yang J, Guertin P, Jia G, Lv Z, Yang H, Ju D (2019) Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. AMB Express 9(1):70. https://doi.org/10.1186/s13568-019-0794-5
doi: 10.1186/s13568-019-0794-5 pubmed: 31127400 pmcid: 6534633
Yu P, Huang Y, Zhang Y, Tang Q, Liang G (2012) Production and evaluation of a chromatographically purified Vero cell rabies vaccine (PVRV) in China using microcarrier technology. Hum Vaccin Immunother 8(9):1230–1235. https://doi.org/10.4161/hv.20985
doi: 10.4161/hv.20985 pubmed: 22894963 pmcid: 3579903

Auteurs

Katsuhiko Kida (K)

Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan. kidak@nissanchem.co.jp.

Daisuke Hatanaka (D)

Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan.

Masataka Minami (M)

Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan.

Taiyo Suzuki (T)

Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan.

Masashi Iwakami (M)

Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan.

Masaki Kobayashi (M)

Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan.

Hisato Hayashi (H)

Head office, Nissan Chemical Corporation, Tokyo, Japan.

Hiroharu Kawahara (H)

Department of Creative Engineering, Material Chemistry Course, National Institute of Technology Kitakyushu College, Fukuoka, Japan.

Masato Horikawa (M)

Head office, Nissan Chemical Corporation, Tokyo, Japan.

Tatsuro Kanaki (T)

Head office, Nissan Chemical Corporation, Tokyo, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH