Influence of Different Arsenic Species on the Bioavailability and Bioaccumulation of Arsenic by Sargassum horneri C. Agardh: Effects under Different Phosphate Conditions.
As species
Bioaccumulation
Bioavailability
Growth
Macroalgae
Sargassum horneri
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
05
04
2023
accepted:
12
08
2023
medline:
13
9
2023
pubmed:
22
8
2023
entrez:
22
8
2023
Statut:
ppublish
Résumé
The growth response and incorporation of As into the Sargassum horneri was evaluated for up to 7 days using either arsenate (As(V)), arsenite (As(III)) or methylarsonate (MMAA(V) and DMAA(V)) at 0, 0.25, 0.5, 1, 2, and 4 μM with various phosphate (P) levels (0, 2.5, 5 and 10 μM). Except As(III), algal chlorophyll fluorescence was almost similar and insignificant, regardless of whether different concentrations of P or As(V) or MMAA(V) or DMAA(V) were provided (p > 0.05). As(III) at higher concentrations negatively affected algal growth rate, though concentrations of all As species had significant effects on growth rate (p < 0.01). Growth studies indicated that toxicity and sensitivity of As species to the algae followed the trend: As(III) > As(V) > MMAA(V) ~ DMAA(V). As bioaccumulation was varied significantly depending on the increasing concentrations of all As species and increasing P levels considerably affected As(V) uptake but no other As species uptake (p < 0.01). The algae accumulated As(V) and As(III) more efficiently than MMAA(V) and DMAA(V). At equal concentrations of As (4 μM) and P (0 μM), the alga was able to accumulate 638.2 ± 71.3, 404.1 ± 70.6, 176.7 ± 19.6, and 205.6 ± 33.2 nM g
Identifiants
pubmed: 37606771
doi: 10.1007/s11356-023-29371-2
pii: 10.1007/s11356-023-29371-2
doi:
Substances chimiques
Arsenic
N712M78A8G
Phosphates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
98246-98260Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Anninou P, Cave RR (2009) How conservative is arsenic in coastal marine environments? A study in Irish coastal waters. Estuar Coast Shelf Sci 82:515–524
ATSDR (2017) The ATSDR 2017 Substance Priority List. U.S.A.: Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25:913–917
Bhattacharjee H, Rosen BP (2007) Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes. In: Nies DH, Silver S (Editors), Molecular Microbiology of Heavy Metals. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 371-406
Bhattacharya P, Chakraborty N, Pal R (2015) Bioremediation of toxic metals using algae. In: Das D (ed) Algal Biorefinery: An Integrated Approach. Springer International Publishing, Cham, pp 439–462
Büchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochem Photobiol 58:137–148
Casado-Martinez M, Smith B, Luoma S, Rainbow P (2010) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): A biodynamic modelling approach. Aquat Toxicol 98:34–43
Castro MCR, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity. Sci Total Environ 503:122–132
Chaloub RM, Reinert F, Nassar CA, Fleury BG, Mantuano DG, Larkum AW (2010) Photosynthetic properties of three Brazilian seaweeds. Braz J Bot 33:371–374
Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97
Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214
Cosgrove J, Borowitzka MA (2010): Chlorophyll Fluorescence Terminology: An Introduction. In: Suggett DJ, Prášil O , Borowitzka MA (Editors), Chlorophyll A Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht, pp. 1-17
Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764
Cullen WR, Harrison LG, Li H, Hewitt G (1994) Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Appl Organomet Chem 8:313–324
David AH, Wen XW, Mark AS, Nicholas SF (1999) Dual-labeling techniques for trace metal biogeochemical investigations in aquatic plankton communities. Aquat Microb Ecol 19:129–138
Devault DA, Massat F, Baylet A, Dolique F, Lopez P-J (2022) Arsenic and chlordecone contamination and decontamination toxicokinetics in Sargassum sp. Environ Sci Pollut Res 29:6–16
Devault DA, Modestin E, Cottereau V, Fabien V, Stiger-Pouvreau V, Ronan P, Alexandra C (2021) The silent spring of Sargassum. Environ Sci Pollut Res 28:15580–15583
Dönmez GÇ, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892
Duncan E, Foster S, Maher W (2010) Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot Mar 53:377–386
Duncan EG, Maher WA, Foster SD, Krikowa F (2013) The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar Chem 157:78–85
Duncan EG, Maher WA, Foster SD (2014) Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ Sci Technol 49:33–50
Edmonds J, Francesconi K (2003) Organoarsenic Compounds in the Marine Environment. In: Craig P (ed) Organometallic Compounds in the Environment. England, Wiley, West Sussex, pp 196–222
Endo H, Suehiro K, Kinoshita J, Gao X, Agatsuma Y (2013) Combined effects of temperature and nutrient availability on growth and phlorotannin concentration of the brown alga Sargassum patens (Fucales; Phaeophyceae). Am J Plant Sci 4:14–20
Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25
Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ Chem 6:95–105
Foster S, Thomson D, Maher W (2008) Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar Chem 108:172–183
Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381
Hasegawa H, Tate Y, Ogino M, Maki T, Begum ZA, Ichijo T, Rahman IMM (2017) Laboratory culture experiments to study the effect of lignite humic acid fractions on iron solubility and iron uptake rates in phytoplankton. J Appl Phycol 29:903–915
Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638
Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271
Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873
Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639
Li R-Y, Ago Y, Liu W-J, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080
Loureiro RR, Reis RP, Berrogain FD, Critchley AT (2012) Extract powder from the brown alga Ascophyllum nodosum (Linnaeus) Le Jolis (AMPEP): a “vaccine-like” effect on Kappaphycus alvarezii (Doty) Doty ex P.C. Silva. J Appl Phycol 24:427–432
Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M (2018) Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55
Maeda S, Ohki A, Kusadome K, Kuroiwa T, Yoshifuku I, Naka K (1992) Bioaccumulation of arsenic and its fate in a freshwater food chain. Appl Organomet Chem 6:213–219
Maher WA, Foster SD, Taylor AM, Krikowa F, Duncan EG, Chariton AA (2011) Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environ Chem 8:9–18
Mamun MAA, Datta RR, Kosugi C, Miki O, Oura M, Rahman IMM, Maki T, Hasegawa H (2017) Arsenic speciation and biotransformation by marine macroalgae in seawater, Asia/CJK Symposium on Analytical Chemistry. The Japan Society for Analytical Chemistry, Tokyo University of Science, Tokyo, Japan, pp. 62-63
Mamun MAA, Omori Y, Miki O, Rahman IMM, Mashio AS, Maki T, Hasegawa H (2019a) Comparative biotransformation and detoxification potential of arsenic by three macroalgae species in seawater: Evidence from laboratory culture studies. Chemosphere 228:117–127
Mamun MAA, Omori Y, Papry RI, Kosugi C, Miki O, Rahman IMM, Mashio AS, Maki T, Hasegawa H (2019b) Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions. J Appl Phycol 31:2669–2685
Mamun MAA, Rahman IMM, Datta RR, Kosugi C, Mashio AS, Maki T, Hasegawa H (2019c) Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study. Chemosphere 222:705–713
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668
Miller EP, Böttger LH, Weerasinghe AJ, Crumbliss AL, Matzanke BF, Meyer-Klaucke W, Küpper FC, Carrano CJ (2013) Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus? J Exp Bot 65:585–594
Miteva E, Merakchiyska M (2002) Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil. Bulg J Agric Sci 8:151–156
Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–34
Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174
Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008a) Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L.: Interactions with phosphate and iron. J Hazard Mater 160:356–361
Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008b) Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.). Chem Eng J 145:179–184
Rahman MA, Hasegawa H (2011) Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere 83:633–646
Rahman MA, Kadohashi K, Maki T, Hasegawa H (2011) Transport of DMAA and MMAA into rice (Oryza sativa L.) roots. Environ Exp Bot 72:41–46
Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219
Rahman MA, Hogan B, Duncan E, Doyle C, Krassoi R, Rahman MM, Naidu R, Lim RP, Maher W, Hassler C (2014) Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicol Environ Saf 106:126–135
Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215
Stiger-Pouvreau V, Mattio L, De Ramon N’Yeurt A, Uwai S, Dominguez H, Flórez-Fernández N, Connan S, Critchley AT (2023) A concise review of the highly diverse genus Sargassum C. Agardh with wide industrial potential. J. Appl. Phycol. https://doi.org/10.1007/s10811-023-02959-4
Stiger-Pouvreau V, Zubia M (2020) Macroalgal diversity for sustainable biotechnological development in French tropical overseas territories. Bot Mar 63:17–41
Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296
Suggett DJ, Prášil O, Borowitzka MA (2010) Chlorophyll a fluorescence in aquatic sciences: methods and applications, 4. Springer
Taylor VF, Jackson BP (2016) Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6–13
Velez-Ramirez AI, Carreño-Quintero N, Vreugdenhil D, Millenaar FF, van Ieperen W (2017) Sucrose and starch content negatively correlates with PSII maximum quantum efficiency in tomato (Solanum lycopersicum) exposed to abnormal light/dark cycles and continuous light. Plant Cell Physiol 58:1339–1349
Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224
Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506
Wang Y, Wang S, Xu P, Liu C, Liu M, Wang Y, Wang C, Zhang C, Ge Y (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Biotechnol 14:427–451
Wang Y, Zhang CH, Lin MM, Ge Y (2016) A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes. J Hazard Mater 318:443–451
Wang Y, Zhang C, Zheng Y, Ge Y (2017) Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. Environ Sci Pollut Res 24:21213–21221
Zhang S, Rensing C, Zhu YG (2014) Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environ Sci Technol 48:994–1000
Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966
Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794