Speech Reception in Young Children with Autism Is Selectively Indexed by a Neural Oscillation Coupling Anomaly.
Autism spectrum disorder (ASD) children
Typically developing (TD) children
low-frequency neural oscillations
neural tracking
phase-amplitude coupling (PAC)
speech processing
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
04 10 2023
04 10 2023
Historique:
received:
17
01
2022
revised:
02
07
2023
accepted:
07
07
2023
medline:
6
10
2023
pubmed:
23
8
2023
entrez:
22
8
2023
Statut:
ppublish
Résumé
Communication difficulties are one of the core criteria in diagnosing autism spectrum disorder (ASD), and are often characterized by speech reception difficulties, whose biological underpinnings are not yet identified. This deficit could denote atypical neuronal ensemble activity, as reflected by neural oscillations. Atypical cross-frequency oscillation coupling, in particular, could disrupt the joint tracking and prediction of dynamic acoustic stimuli, a dual process that is essential for speech comprehension. Whether such oscillatory anomalies already exist in very young children with ASD, and with what specificity they relate to individual language reception capacity is unknown. We collected neural activity data using electroencephalography (EEG) in 64 very young children with and without ASD (mean age 3; 17 females, 47 males) while they were exposed to naturalistic-continuous speech. EEG power of frequency bands typically associated with phrase-level chunking (δ, 1-3 Hz), phonemic encoding (low-γ, 25-35 Hz), and top-down control (β, 12-20 Hz) were markedly reduced in ASD relative to typically developing (TD) children. Speech neural tracking by δ and θ (4-8 Hz) oscillations was also weaker in ASD compared with TD children. After controlling gaze-pattern differences, we found that the classical θ/γ coupling was replaced by an atypical β/γ coupling in children with ASD. This anomaly was the single most specific predictor of individual speech reception difficulties in ASD children. These findings suggest that early interventions (e.g., neurostimulation) targeting the disruption of β/γ coupling and the upregulation of θ/γ coupling could improve speech processing coordination in young children with ASD and help them engage in oral interactions.
Identifiants
pubmed: 37607822
pii: JNEUROSCI.0112-22.2023
doi: 10.1523/JNEUROSCI.0112-22.2023
pmc: PMC10552944
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6779-6795Informations de copyright
Copyright © 2023 Wang et al.
Références
J Cogn Neurosci. 2019 Aug;31(8):1205-1215
pubmed: 30990387
Front Psychol. 2011 Jun 27;2:130
pubmed: 21743809
Nat Commun. 2020 Jun 19;11(1):3117
pubmed: 32561726
J Child Psychol Psychiatry. 2012 Mar;53(3):219-33
pubmed: 22188468
Nature. 2000 Oct 19;407(6806):906-8
pubmed: 11057669
Neurobiol Learn Mem. 2016 Oct;134 Pt B:304-16
pubmed: 27521755
Sci Rep. 2017 Feb 22;7:43254
pubmed: 28225070
Eur J Neurosci. 2018 Oct;48(7):2642-2650
pubmed: 29283465
PLoS Biol. 2013 Dec;11(12):e1001752
pubmed: 24391472
J Autism Dev Disord. 2020 Jan;50(1):356-363
pubmed: 31583624
PLoS Biol. 2020 Sep 8;18(9):e3000833
pubmed: 32898188
Trends Cogn Sci. 2005 Oct;9(10):474-80
pubmed: 16150631
Neuron. 2018 Dec 5;100(5):1252-1266.e3
pubmed: 30482692
Learn Mem. 1997 May-Jun;4(1):1-35
pubmed: 10456051
Autism Res. 2009 Aug;2(4):220-31
pubmed: 19708061
Neuroimage. 2018 Jul 15;175:70-79
pubmed: 29609008
Neuroimage. 2022 Feb 15;247:118698
pubmed: 34798233
Biomedicines. 2021 Aug 02;9(8):
pubmed: 34440147
J Autism Dev Disord. 2000 Jun;30(3):205-23
pubmed: 11055457
Nat Neurosci. 2012 Mar 18;15(4):511-7
pubmed: 22426255
J Exp Child Psychol. 2019 Feb;178:317-340
pubmed: 30384968
J Autism Dev Disord. 2005 Apr;35(2):205-20
pubmed: 15909407
Biol Psychiatry. 2010 Dec 15;68(12):1100-6
pubmed: 21130222
Front Neurosci. 2017 Sep 01;11:487
pubmed: 28919850
Front Neurol. 2019 Apr 04;10:325
pubmed: 31019487
Front Hum Neurosci. 2016 Nov 30;10:604
pubmed: 27965557
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15220-5
pubmed: 25288765
Neuron. 2011 Dec 22;72(6):1080-90
pubmed: 22196341
Neuroreport. 2001 Jan 22;12(1):7-10
pubmed: 11201094
Brain Res Cogn Brain Res. 2003 Jun;17(1):154-63
pubmed: 12763201
Neurosci Biobehav Rev. 2018 Jan;84:182-192
pubmed: 29162518
Sci Adv. 2020 Jul 22;6(30):eaba7830
pubmed: 32832669
Neuroscience. 1991;41(1):1-24
pubmed: 1676137
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Ann N Y Acad Sci. 2019 Oct;1453(1):67-78
pubmed: 31237357
Nat Commun. 2014 Sep 02;5:4694
pubmed: 25178489
Neuron. 2018 Jun 6;98(5):1042-1054.e4
pubmed: 29779940
J Neurosci Methods. 2015 Jul 30;250:126-36
pubmed: 25596422
J Neurosci. 2012 Feb 1;32(5):1791-802
pubmed: 22302818
Wiley Interdiscip Rev Cogn Sci. 2020 Sep;11(5):e1528
pubmed: 32244259
Neuroimage. 2016 Jun;133:516-528
pubmed: 26931813
Curr Opin Neurobiol. 2015 Apr;31:51-61
pubmed: 25212583
Dev Cogn Neurosci. 2021 Apr;48:100915
pubmed: 33515956
Ann N Y Acad Sci. 2019 Oct;1453(1):140-152
pubmed: 31020680
Neuroimage. 2019 Jan 1;184:440-449
pubmed: 30243972
Eur J Neurosci. 2014 Mar;39(5):705-19
pubmed: 24329933
Front Hum Neurosci. 2019 Jul 31;13:263
pubmed: 31427937
Neuroimage. 2014 Mar;88:41-6
pubmed: 24188816
Neurobiol Lang (Camb). 2022 Aug 17;3(3):495-514
pubmed: 37216063
Autism Res. 2020 Jul;13(7):1051-1071
pubmed: 32468731
Nat Genet. 2016 Nov;48(11):1359-1369
pubmed: 27668656
Int J Environ Res Public Health. 2018 Apr 11;15(4):
pubmed: 29641462
BMC Psychiatry. 2008 Aug 01;8:66
pubmed: 18673566
Trends Neurosci. 2015 Nov;38(11):725-740
pubmed: 26549886
Neuroimage. 2019 Nov 15;202:116060
pubmed: 31362048
Neurosci Lett. 2018 Feb 14;666:158-164
pubmed: 29248615
Front Hum Neurosci. 2015 Mar 27;9:171
pubmed: 25870556
J Anat. 2017 Jan;230(1):4-15
pubmed: 27620360
Cereb Cortex. 2017 Sep 1;27(9):4293-4302
pubmed: 27566979
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31459-31469
pubmed: 33229572
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Front Psychiatry. 2019 Jan 29;9:783
pubmed: 30761031
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18688-93
pubmed: 20956297
Annu Rev Neurosci. 2012;35:203-25
pubmed: 22443509
Neuron. 2011 Jun 23;70(6):1218-25
pubmed: 21689606
Front Hum Neurosci. 2016 Mar 18;10:120
pubmed: 27047363
Front Psychol. 2013 Mar 20;4:138
pubmed: 23519170
J Neural Eng. 2017 Jun;14(3):036020
pubmed: 28384124
Vision Res. 2015 Jul;112:11-25
pubmed: 25982711
J Neurosci Methods. 2014 Mar 30;225:42-56
pubmed: 24447842
Front Neurosci. 2018 May 08;12:309
pubmed: 29867321
Elife. 2018 Feb 27;7:
pubmed: 29482718
Curr Biol. 2009 Oct 13;19(19):1637-41
pubmed: 19800236
J Autism Dev Disord. 2012 Apr;42(4):499-511
pubmed: 21528425
J Neurosci. 2017 Aug 16;37(33):7930-7938
pubmed: 28729443
Elife. 2015 May 29;4:e06213
pubmed: 26023831
Autism Res. 2017 Apr;10(4):631-647
pubmed: 27910247
Neuroimage. 2017 Apr 15;150:318-328
pubmed: 28213117
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
Eur J Neurosci. 2019 Dec;50(11):3831-3842
pubmed: 31287601
Psychol Rev. 2014 Oct;121(4):649-75
pubmed: 25347312
J Neurosci Methods. 2001 Oct 30;111(2):83-98
pubmed: 11595276
Neuron. 2015 Oct 7;88(1):220-35
pubmed: 26447583
PLoS One. 2016 Mar 23;11(3):e0151859
pubmed: 27008164
Brain Sci. 2021 May 25;11(6):
pubmed: 34070294
Curr Opin Neurobiol. 2010 Apr;20(2):156-65
pubmed: 20359884
J Neurophysiol. 2010 Aug;104(2):1195-210
pubmed: 20463205
Science. 1997 Apr 25;276(5312):593-6
pubmed: 9110978
Nat Neurosci. 2021 Apr;24(4):554-564
pubmed: 33686299
Neuroimage Clin. 2015 Mar 06;7:732-41
pubmed: 25844325
Hear Res. 2017 May;348:70-77
pubmed: 28246030
J Pediatr Psychol. 2018 Aug 1;43(7):800-813
pubmed: 29701857
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
J Am Acad Child Adolesc Psychiatry. 2014 Jun;53(6):635-46
pubmed: 24839882