Enhanced maternal behaviors in a mouse model of congenital blindness.
congenital blindness
maternal aggression
maternal behaviors
maternal motivation
mice
Journal
Developmental psychobiology
ISSN: 1098-2302
Titre abrégé: Dev Psychobiol
Pays: United States
ID NLM: 0164074
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
revised:
04
05
2023
received:
18
07
2022
accepted:
07
06
2023
medline:
24
8
2023
pubmed:
23
8
2023
entrez:
22
8
2023
Statut:
ppublish
Résumé
In mammals, mothering is one of the most important prosocial female behavior to promote survival, proper sensorimotor, and emotional development of the offspring. Different intrinsic and extrinsic factors can initiate and maintain these behaviors, such as hormonal, cerebral, and sensory changes. Infant cues also stimulate multisensory systems and orchestrate complex maternal responsiveness. To understand the maternal behavior driven by complex sensory interactions, it is necessary to comprehend the individual sensory systems by taking out other senses. An excellent model for investigating sensory regulation of maternal behavior is a murine model of congenital blindness, the ZRDBA mice, where both an anophthalmic and sighted mice are generated from the same litter. Therefore, this study aims to assess whether visual inputs are essential to driving maternal behaviors in mice. Maternal behaviors were assessed using three behavioral tests, including the pup retrieval test, the home cage maternal behavior test, and the maternal aggression test. Our results show that blind mothers (1) took less time to retrieve their offspring inside the nest, (2) spent more time nursing and licking their offspring in the second- and third-week postpartum, and (3) exhibited faster aggressive behaviors when exposed to an intruder male, compared to the sighted counterparts. This study provides evidence that congenitally blind mothers show more motivation to retrieve the pups, care, and protection towards their pups than sighted ones, likely due to a phenomenon of sensory compensation.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e22406Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Abel, E. L. (1972). Suppression of pup retrieving behavior in rats following administration of L- 9-tetrahydrocannabinol. Experientia, 28(10), 1187-1188. https://doi.org/10.1007/bf01946160
Aguggia, J. P., Suárez, M. M., & Rivarola, M. A. (2013). Early maternal separation: neurobehavioral consequences in mother rats. Behavioural brain research, 248, 25-31.
Bains, R. S., Wells, S., Sillito, R. R., Armstrong, J. D., Cater, H. L., Banks, G., & Nolan, P. M. (2018). Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods, 300, 37-47. https://doi.org/10.1016/j.jneumeth.2017.04.014
Barrière, D. A., Ella, A., Szeremeta, F., Adriaensen, H., Même, W., Chaillou, E., Migaud, M., Même, S., Lévy, F., & Keller, M. (2021). Brain orchestration of pregnancy and maternal behavior in mice: A longitudinal morphometric study. Neuroimage, 230, 117776. https://doi.org/10.1016/j.neuroimage.2021.117776
Barrière, D. A., Hamieh, A. M., Magalhães, R., Traoré, A., Barbier, J., Bonny, J. M., Ardid, D., Busserolles, J., Mériaux, S., & Marchand, F. (2019). Structural and functional alterations in the retrosplenial cortex following neuropathic pain. Pain, 160(10), 2241-2254. https://doi.org/10.1097/j.pain.0000000000001610
Bayerl, D. S., & Bosch, O. J. (2019). Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. Genes, Brain, and Behavior, 18(1), e12517. https://doi.org/10.1111/gbb.12517
Beach, F. A., Jr. (1937). The neural basis of innate behavior. I. Effects of cortical lesions upon the maternal behavior pattern in the rat. Journal of Comparative Psychology, 24(3), 393-440. https://doi.org/10.1037/h0059606
Beach, F. A., & Jaynes, J. (1956). Studies of maternal retrieving in rats. III. Sensory cues involved in the lactating female's response to her young. Behaviour, 10(1/2), 104-125.
Beaulieu-Lefebvre, M., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Odor perception and odor awareness in congenital blindness. Brain Research Bulletin, 84(3), 206-209. https://doi.org/10.1016/j.brainresbull.2010.12.014
Bosch, O. J. (2011). Maternal nurturing is dependent on her innate anxiety: The behavioral roles of brain oxytocin and vasopressin. Hormones and Behavior, 59(2), 202-212. https://doi.org/10.1016/j.yhbeh.2010.11.012
Bosch, O. J. (2013). Maternal aggression in rodents: Brain oxytocin and vasopressin mediate pup defence. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 368(1631), 20130085. https://doi.org/10.1098/rstb.2013.0085
Bosch, O. J., & Neumann, I. D. (2010). Vasopressin released within the central amygdala promotes maternal aggression. The European Journal of Neuroscience, 31(5), 883-891. https://doi.org/10.1111/j.1460-9568.2010.07115.x
Brennan, P. A., & Keverne, E. B. (2004). Something in the air? New insights into mammalian pheromones. Current Biology, 14, R81-R89. https://doi.org/10.1016/j.cub.2003.12.052
Caughey, S. D., Klampfl, S. M., Bishop, V. R., Pfoertsch, J., Neumann, I. D., Bosch, O. J., & Meddle, S. L. (2011). Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. Journal of Neuroendocrinology, 23(11), 1113-1124. https://doi.org/10.1111/j.1365-2826.2011.02224.x
Chabot, N., Robert, S., Tremblay, R., Miceli, D., Boire, D., & Bronchti, G. (2007). Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. The European Journal of Neuroscience, 26(8), 2334-2348. https://doi.org/10.1111/j.1460-9568.2007.05854.x
Chase, H. B., & Chase, E. B. (1941). Studies on an anophthalmic strain of mice I. Embryology of the eye region. Journal of Morphology, 68(2), 279-301. https://doi.org/10.1002/jmor.1050680205
Chiesa, S., Galati, D., & Schmidt, S. (2015). Communicative interactions between visually impaired mothers and their sighted children: Analysis of gaze, facial expressions, voice and physical contacts. Childcare, Health and Development, 41(6), 1040-1046. https://doi.org/10.1111/cch.12274
Collignon, O., & De Volder, A. G. (2009). Further evidence that congenitally blind participants react faster to auditory and tactile spatial targets. Canadian Journal of Experimental Psychology (Revue canadienne de psychologie experimentale), 63(4), 287-293. https://doi.org/10.1037/a0015415
Collignon, O., Renier, L., Bruyer, R., Tranduy, D., & Veraart, C. (2006). Improved selective and divided spatial attention in early blind subjects. Brain Research, 1075(1), 175-182. https://doi.org/10.1016/j.brainres.2005.12.079
Dong, H. W., & Swanson, L. W. (2004). Projections from bed nuclei of the stria terminalis, posterior division: Implications for cerebral hemisphere regulation of defensive and reproductive behaviors. The Journal of Comparative Neurology, 471(4), 396-433. https://doi.org/10.1002/cne.20002
Dulac, C., O'Connell, L. A., & Wu, Z. (2014). Neural control of maternal and paternal behaviors. Science (New York, NY), 345(6198), 765-770. https://doi.org/10.1126/science.1253291
Dumont, E. C., & Williams, J. T. (2004). Noradrenaline triggers GABAA inhibition of bed nucleus of the stria terminalis neurons projecting to the ventral tegmental area. The Journal of Neuroscience, 24(38), 8198-8204. https://doi.org/10.1523/JNEUROSCI.0425-04.2004
Ferreira, A., Dahlöf, L. G., & Hansen, S. (1987). Olfactory mechanisms in the control of maternal aggression, appetite, and fearfulness: effects of lesions to olfactory receptors, mediodorsal thalamic nucleus, and insular prefrontal cortex. Behavioral neuroscience, 101(5), 709-746.
Ferdenzi, C., Coureaud, G., Camos, V., & Schaal, B. (2010). Attitudes toward everyday odors for children with visual impairments: A pilot study. Journal of Visual Impairment & Blindness, 104(1), 55-59. https://doi.org/10.1177/0145482x1010400109
Fraser, E. J., & Shah, N. M. (2014). Complex chemosensory control of female reproductive behaviors. PLoS ONE, 9(2), e90368. https://doi.org/10.1371/journal.pone.0090368
Francis, D. D., & Meaney, M. J. (1999). Maternal care and the development of stress responses. Current Opinion in Neurobiology, 9(1), 128-134.
Gammie, S. C. (2005). Current models and future directions for understanding the neural circuitries of maternal behaviors in rodents. Behavioral and Cognitive Neuroscience Reviews, 4(2), 119-135. https://doi.org/10.1177/1534582305281086
Gammie, S. C., Negron, A., Newman, S. M., & Rhodes, J. S. (2004). Corticotropin-releasing factor inhibits maternal aggression in mice. Behavioral Neuroscience, 118(4), 805-814. https://doi.org/10.1037/0735-7044.118.4.805
Gammie, S. C., & Nelson, R. J. (2001). cFOS and pCREB activation and maternal aggression in mice. Brain Research, 898(2), 232-241. https://doi.org/10.1016/s0006-8993(01)02189-8
Gandelman, R. (1972). Mice: Postpartum aggression elicited by the presence of an intruder. Hormones and Behavior, 3(1), 23-28. https://doi.org/10.1016/0018-506x(72)90003-7
Gandelman, R., Zarrow, M. X., & Denenberg, V. H. (1970). Maternal behavior: Differences between mother and virgin mice as a function of the testing procedure. Developmental Psychobiology, 3(3), 207-214. https://doi.org/10.1002/dev.420030308
Gandelman, R., Zarrow, M. X., & Denenberg, V. H. (1971). Stimulus control of cannibalism and maternal behavior in anosmic mice. Physiology & Behavior, 7(4), 583-586. https://doi.org/10.1016/0031-9384(71)90112-0
Gandelman, R., Zarrow, M. X., & Denenberg, V. H. (1972). Reproductive and maternal performance in the mouse following removal of the olfactory bulbs. Journal of Reproduction and Fertility, 28(3), 453-456. https://doi.org/10.1530/jrf.0.0280453
Gandelman, R., Zarrow, M. X., Denenberg, V. H., & Myers, M. (1971). Olfactory bulb removal eliminates maternal behavior in the mouse. Science, 171(3967), 210-211. https://doi.org/10.1126/science.171.3967.210
Ganea, N., Hudry, K., Vernetti, A., Tucker, L., Charman, T., Johnson, M. H., & Senju, A. (2018). Development of adaptive communication skills in infants of blind parents. Developmental Psychology, 54(12), 2265-2273. https://doi.org/10.1037/dev0000564
Gaub, S., & Ehret, G. (2005). Grouping in auditory temporal perception and vocal production is mutually adapted: The case of wriggling calls of mice. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1131-1135. https://doi.org/10.1007/s00359-005-0036-y
González-Mariscal, G., Caba, M., Hoffman, K. L., & Melo, A. I.. (2017). “Parental Behavior.”. In D. W. Pfaff, & M. Joël (Eds.). Hormones, brain, and behavior (3rd ed., Vol. 1, pp. 83-116) Academic Press. https://doi.org/10.1016/B978-0-12-803592-4.00003-1
González-Mariscal, G., & Poindron, P. (2002). Parental Care in Mammals: Immediate Internal and Sensory Factors of Control. Hormones, Brain and Behavior, 1, 215-298.
Gougoux, F., Lepore, F., Lassonde, M., Voss, P., Zatorre, R. J., & Belin, P. (2004). Neuropsychology: Pitch discrimination in the early blind. Nature, 430(6997), 309. https://doi.org/10.1038/430309a
Grieb, Z. A., Vitale, E. M., Morrell, J. I., Lonstein, J. S., & Pereira, M. (2020). Decreased mesolimbic dopaminergic signaling underlies the waning of maternal caregiving across the postpartum period in rats. Psychopharmacology, 237(4), 1107-1119. https://doi.org/10.1007/s00213-019-05441-7
Grota, L. J., & Ader, R. (1974). Behavior of lactating rats in a dual-chambered maternity cage. Hormones and Behavior, 5(4), 275-282. https://doi.org/10.1016/0018-506x(74)90014-2
Haller, J. (2018). The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neuroscience and Biobehavioral Reviews, 85, 34-43. https://doi.org/10.1016/j.neubiorev.2017.09.017
Hasen, N. S., & Gammie, S. C. (2005). Differential for activation in virgin and lactating mice in response to an intruder. Physiology & Behavior, 84(5), 681-695. https://doi.org/10.1016/j.physbeh.2005.02.010
Hasen, N. S., & Gammie, S. C. (2006). Maternal aggression: New insights from Egr-1. Brain Research, 1108(1), 147-156. https://doi.org/10.1016/j.brainres.2006.06.007
Herrenkohl, L. R., & Rosenberg, P. A. (1972). Exteroceptive stimulation of maternal behavior in the naïve rat. Physiology & Behavior, 8(4), 595-598. https://doi.org/10.1016/0031-9384(72)90080-7
Hugdahl, K., Ek, M., Takio, F., Rintee, T., Tuomainen, J., Haarala, C., & Hämäläinen, H. (2004). Blind individuals show enhanced perceptual and attentional sensitivity for identification of speech sounds. Cognitive Brain Research, 19(1), 28-32. https://doi.org/10.1016/j.cogbrainres.2003.10.015
Iura, Y., & Udo, H. (2014). Behavioral analyses of visually impaired Crx knockout mice revealed sensory compensation in exploratory activities on elevated platforms. Behavioural Brain Research, 258, 1-7.
Jalabert, M., Aston-Jones, G., Herzog, E., Manzoni, O., & Georges, F. (2009). Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1336-1346.
Keller, M., Vandenberg, L. N., & Charlier, T. D. (2019). The parental brain and behavior: A target for endocrine disruption. Frontiers in neuroendocrinology, 54, 100765.
Kelly, E. A., Russo, A. S., Jackson, C. D., Lamantia, C. E., & Majewska, A. K. (2015). Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: Analysis of matrix metalloproteinase 9 deficient mice. Frontiers in Cellular Neuroscience, 9, 369. https://doi.org/10.3389/fncel.2015.00369
Kenyon, P., Cronin, P., & Keeble, S. (1983). Role of the infraorbital nerve in retrieving behavior in lactating rats. Behavioral Neuroscience, 97(2), 255-269. https://doi.org/10.1037//0735-7044.97.2.255
Keyser-Marcus, L., Stafisso-Sandoz, G., Gerecke, K., Jasnow, A., Nightingale, L., Lambert, K. G., Gatewood, J., & Kinsley, C. H. (2001). Alterations of medial preoptic area neurons following pregnancy and pregnancy-like steroidal treatment in the rat. Brain Research Bulletin, 55(6), 737-745. https://doi.org/10.1016/s0361-9230(01)00554-8
Kim, S., & Strathearn, L. (2016). Oxytocin and maternal brain plasticity. New Directions for Child and Adolescent Development, 2016(153), 59-72. https://doi.org/10.1002/cad.20170
Klampfl, S. M., & Bosch, O. J. (2019). Mom doesn't care: When increased brain CRF system activity leads to maternal neglect in rodents. Frontiers in Neuroendocrinology, 53, 100735. https://doi.org/10.1016/j.yfrne.2019.01.001
Kohl, J., Autry, A. E., & Dulac, C. (2017). The neurobiology of parenting: A neural circuit perspective. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 39(1), 1-11. https://doi.org/10.1002/bies.201600159
Kolunie, J. M., & Stern, J. M. (1995). Maternal aggression in rats: Effects of olfactory bulbectomy, ZnSO4-induced anosmia, and vomeronasal organ removal. Hormones and Behavior, 29(4), 492-518. https://doi.org/10.1006/hbeh.1995.1285
Kolunie, J. M., Stern, J. M., & Barfield, R. J. (1994). Maternal aggression in rats: Effects of visual or auditory deprivation of the mother and dyadic pattern of ultrasonic vocalizations. Behavioral and Neural Biology, 62(1), 41-49. https://doi.org/10.1016/S0163-1047(05)80057-3
Kristal, M. B. (2009). The biopsychology of maternal behavior in nonhuman mammals. ILAR Journal, 50(1), 51-63. https://doi.org/10.1093/ilar.50.1.51
Kudo, T., Konno, K., Uchigashima, M., Yanagawa, Y., Sora, I., Minami, M., & Watanabe, M. (2014). GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. The European Journal of Neuroscience, 39(11), 1796-1809. https://doi.org/10.1111/ejn.12503
Kujala, T., Alho, K., Huotilainen, M., Ilmoniemi, R. J., Lehtokoski, A., Leinonen, A., Rinne, T., Salonen, O., Sinkkonen, J., Standertskjöld-Nordenstam, C. G., & Näätänen, R. (1997). Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology, 34(2), 213-216. https://doi.org/10.1111/j.1469-8986.1997.tb02134.x
Kupers, R., & Ptito, M. (2011). Insights from darkness: What the study of blindness has taught us about brain structure and function. Progress in Brain Research, 192, 17-31. https://doi.org/10.1016/B978-0-444-53355-5.00002-6
Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience & Biobehavioral Reviews, 41, 36-52. https://doi.org/10.1016/j.neubiorev.2013.08.001
Li, M. (2022). The medial prefrontal regulation of maternal behavior across postpartum: A triadic model. Psychological review, https://doi.org/10.1037/rev0000374
Lee, A., Clancy, S., & Fleming, A. S. (1999). Mother rats bar-press for pups: Effects of lesions of the mPOA and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 100(1-2), 15-31. https://doi.org/10.1016/s0166-4328(98)00109-0
Lee, A. W., & Brown, R. E. (2002). Medial preoptic lesions disrupt parental behavior in both male and female California mice (Peromyscus californicus). Behavioral Neuroscience, 116(6), 968-975. https://doi.org/10.1037//0735-7044.116.6.968
Lévy, F., & Keller, M. (2009). Olfactory mediation of maternal behavior in selected mammalian species. Behavioural Brain Research, 200(2), 336-345. https://doi.org/10.1016/j.bbr.2008.12.017
Liotti, M., Ryder, K., & Woldorff, M. G. (1998). Auditory attention in the congenitally blind: Where, when and what gets reorganized? Neuroreport, 9(6), 1007-1012. https://doi.org/10.1097/00001756-199804200-00010
Lonstein, J. S., & Gammie, S. C. (2002). Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neuroscience and Biobehavioral Reviews, 26(8), 869-888. https://doi.org/10.1016/s0149-7634(02)00087-8
Lonstein, J. S., Lévy, F., & Fleming, A. S. (2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156-185. https://doi.org/10.1016/j.yhbeh.2015.06.011
Manescu, S., Chouinard-Leclaire, C., Collignon, O., Lepore, F., & Frasnelli, J. (2021). Enhanced odorant localization abilities in congenitally blind but not in late-blind individuals. Chemical Senses, 46, bjaa073. https://doi.org/10.1093/chemse/bjaa073
Martín-Sánchez, A., McLean, L., Beynon, R. J., Hurst, J. L., Ayala, G., Lanuza, E., & Martínez-Garcia, F. (2015). From sexual attraction to maternal aggression: When pheromones change their behavioural significance. Hormones and Behavior, 68, 65-76. https://doi.org/10.1016/j.yhbeh.2014.08.007
Massé, I. O., Guillemette, S., Laramée, M. E., Bronchti, G., & Boire, D. (2014). Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice. Brain Research, 1588, 113-126. https://doi.org/10.1016/j.brainres.2014.09.025
Mayer, A. D., & Rosenblatt, J. S. (1993). Peripheral olfactory deafferentation of the primary olfactory system in rats using ZnSO4 nasal spray with special reference to maternal behavior. Physiology & Behavior, 53(3), 587-592. https://doi.org/10.1016/0031-9384(93)90157-b
McHenry, J. A., Rubinow, D. R., & Stuber, G. D. (2015). Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Frontiers in Neuroendocrinology, 38, 65-72. https://doi.org/10.1016/j.yfrne.2015.04.001
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161-1192. https://doi.org/10.1146/annurev.neuro.24.1.1161
Miceli, M. O., Fleming, A. S., & Malsbury, C. W. (1983). Disruption of maternal behaviour in virgin and postparturient rats following sagittal plane knife cuts in the preoptic area-hypothalamus. Behavioural Brain Research, 9(3), 337-360. https://doi.org/10.1016/0166-4328(83)90137-7
Morgan, H. D., Fleming, A. S., & Stern, J. M. (1992). Somatosensory control of the onset and retention of maternal responsiveness in primiparous Sprague-Dawley rats. Physiology & Behavior, 51(3), 549-555. https://doi.org/10.1016/0031-9384(92)90178-5
Noirot, E. E. (1965). Changes in responsiveness to young in the adult mouse. 3. The effect of immediately preceding performances. Behaviour, 24(3), 318-325. https://doi.org/10.1163/156853965x00084
Noirot, E. E. (1969). Serial order of maternal responses in mice. Animal Behaviour, 17(3), 547-550.
Numan, M. (2007). Motivational systems and the neural circuitry of maternal behavior in the rat. Developmental Psychobiology, 49(1), 12-21. https://doi.org/10.1002/dev.20198
Numan, M., & Insel, T. R. (2003). Hormonal and nonhormonal basis of maternal behavior. In The neurobiology of parental behavior (pp. 8-41). Springer,.
Numan, M., & Numan, M. J. (1997). Projection sites of medial preoptic area and ventral bed nucleus of the stria terminalis neurons that express Fos during maternal behavior in female rats. Journal of Neuroendocrinology, 9(5), 369-384. https://doi.org/10.1046/j.1365-2826.1997.t01-1-00597
Numan, M., & Stolzenberg, D. S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30(1), 46-64. https://doi.org/10.1016/j.yfrne.2008.10.002
Numan, M., & Young, L. J. (2016). Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 77, 98-112. https://doi.org/10.1016/j.yhbeh.2015.05.015
Numan, M., & Woodside, B. (2010). Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behavioral neuroscience, 124(6), 715-741.
Oxley, G., & Fleming, A. S. (2000). The effects of medial preoptic area and amygdala lesions on maternal behavior in the juvenile rat. Developmental Psychobiology, 37(4), 253-265.
Peirson, S. N., Brown, L. A., Pothecary, C. A., Benson, L. A., & Fisk, A. S. (2018). Light and the laboratory mouse. Journal of Neuroscience Methods, 300, 26-36. https://doi.org/10.1016/j.jneumeth.2017.04.007
Peirson, S. N., & Foster, R. G. (2011). Bad light stops play. EMBO Reports, 12(5), 380. https://doi.org/10.1038/embor.2011.70
Pereira, M., & Morrell, J. I. (2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: Facilitation followed by inhibition. Behavioural Brain Research, 205(1), 238-248. https://doi.org/10.1016/j.bbr.2009.06.026
Petrulis, A. (2013). Chemosignals and hormones in the neural control of mammalian sexual behavior. Frontiers in Neuroendocrinology, 34(4), 255-267. https://doi.org/10.1016/j.yfrne.2013.07.007
Pfaff, D. W. (1982). The Physiological Mechanisms of Motivation. Springer-Verlag.
Piché, M., Robert, S., Miceli, D., & Bronchti, G. (2004). Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice. The European Journal of Neuroscience, 20(12), 3463-3472. https://doi.org/10.1111/j.1460-9568.2004.03823.x
Pigeon, C., & Marin-Lamellet, C. (2015). Evaluation of the attentional capacities and working memory of early and late blind persons. Acta Psychologica, 155, 1-7. https://doi.org/10.1016/j.actpsy.2014.11.010
Poindron, P. (2005). Mechanisms of activation of maternal behaviour in mammals. Reproduction, Nutrition, Development, 45(3), 341-351. https://doi.org/10.1051/rnd:2005025
Qin, W., Xuan, Y., Liu, Y., Jiang, T., & Yu, C. (2015). Functional connectivity density in congenitally and late blind subjects. Cerebral Cortex (New York, N.Y.: 1991), 25(9), 2507-2516. https://doi.org/10.1093/cercor/bhu051
Ramamurthy, D. L., & Krubitzer, L. A. (2018). Neural coding of whisker-mediated touch in primary somatosensory cortex is altered following early blindness. The Journal of Neuroscience, 38(27), 6172-6189.
Rosenblatt, J. S. (1967). Nonhormonal basis of maternal behavior in the rat. Science (New York, N.Y.), 156(3781), 1512-1514. https://doi.org/10.1126/science.156.3781.1512
Rosenblatt, J. S., & Lehrman, D. S. (1963). Maternal behavior in the laboratory rat. In H. L. Reingold, (Ed.), Maternal behavior in mammals (pp. 8-57). Wiley.
Rosenblatt, J. S., Siegel, H. I., & Mayer, A. D. (1979). Progress in the study of maternal behavior in the rat: Hormonal, nonhormonal, sensory, and developmental aspects. In J. S. Rosenblatt, R. A. Hinde, C. Beer, & M.-C. Busnel, (Éds.), Advances in the study of behavior (Vol., 10, pp. 225-311). Academic Press. https://doi.org/10.1016/S0065-3454(08)60096-0
Santos, R., & Ribeiro, V. M. (2020). Transition of blind women to motherhood from the perspective of transitions theory. Revista Brasileira de Enfermagem, 73(Suppl. (4), e20190234. https://doi.org/10.1590/0034-7167-2019-0234
Sato, A., Nakagawasai, O., Tan-No, K., Onogi, H., Niijima, F., & Tadano, T. (2010). Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behavioural Brain Research, 215(1), 141-145. https://doi.org/10.1016/j.bbr.2010.07.012
Schaal, B., Coureaud, G., Doucet, S., Delaunay-El Allam, M., Moncomble, A. S., Montigny, D., Patris, B., & Holley, A. (2009). Mammary olfactory signalisation in females and odor processing in neonates: Ways evolved by rabbits and humans. Behavioural Brain Research, 200(2), 346-358. https://doi.org/10.1016/j.bbr.2009.02.008
Semaan, S. J., & Kauffman, A. S. (2010). Sexual differentiation and development of forebrain reproductive circuits. Current Opinion in Neurobiology, 20(4), 424-431. https://doi.org/10.1016/j.conb.2010.04.004
Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151(5), 2276-2286. https://doi.org/10.1210/en.2009-1271
Skripuletz, T., Kruschinski, C., Pabst, R., von Hörsten, S., & Stephan, M. (2010). Postnatal experiences influence the behavior in adult male and female Fischer and Lewis rats. International Journal of Developmental Neuroscience, 28(7), 561-571. https://doi.org/10.1016/j.ijdevneu.2010.07.235
Slimani, H., Danti, S., Ptito, M., & Kupers, R. (2014). Pain perception is increased in congenital but not late onset blindness. PLoS ONE, 9(9), e107281. https://doi.org/10.1371/journal.pone.0107281
Slimani, H., Danti, S., Ricciardi, E., Pietrini, P., Ptito, M., & Kupers, R. (2013). Hypersensitivity to pain in congenital blindness. Pain, 154(10), 1973-1978. https://doi.org/10.1016/j.pain.2013.05.036
Slimani, H., Ptito, M., & Kupers, R. (2015). Enhanced heat discrimination in congenital blindness. Behavioural Brain Research, 283, 233-237. https://doi.org/10.1016/j.bbr.2015.01.037
Smotherman, W. P., Bell, R. W., Starzec, J., Elias, J., & Zachman, T. A. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice. Behavioral Biology, 12(1), 55-66. https://doi.org/10.1016/S0091-6773(74)91026-8
Sorokowska, A., Sorokowski, P., Karwowski, M., Larsson, M., & Hummel, T. (2019). Olfactory perception and blindness: A systematic review and meta-analysis. Psychological Research, 83(8), 1595-1611. https://doi.org/10.1007/s00426-018-1035-2
Stern, J. M. (1989). Chapter three-Maternal behavior: Sensory, hormonal, and neural determinants. In F. R. Brush, & S. Levine (Éds.), Psychoendocrinology (pp. 105-226). Academic Press. https://doi.org/10.1016/B978-0-12-137952-0.50008-2
Stern, J. M. (1990). Multisensory regulation of maternal behavior and masculine sexual behavior: A revised view. Neuroscience and Biobehavioral Reviews, 14(2), 183-200. https://doi.org/10.1016/s0149-7634(05)80219-2
Stern, J. M. (1996). Trigeminal lesions and maternal behavior in Norway rats: II. Disruption of parturition. Physiology & Behavior, 60(1), 187-190. https://doi.org/10.1016/0031-9384(96)00016-9
Stern, J. M. (1997). Offspring-induced nurturance: Animal-human parallels. Developmental Psychobiology, 31(1), 19-37. https://doi.org/10.1002/(sici)1098-2302(199707)31:1<19::aid-dev3>3.0.co;2-x
Stern, J. M., & Johnson, S. K. (1990). Ventral somatosensory determinants of nursing behavior in Norway rats. I. Effects of variations in the quality and quantity of pup stimuli. Physiology & Behavior, 47(5), 993-1011. https://doi.org/10.1016/0031-9384(90)90026-z
Stern, J. M., & Lonstein, J. S. (2001). Neural mediation of nursing and related maternal behaviors. Progress in Brain Research, 133, 263-278. https://doi.org/10.1016/s0079-6123(01)33020-0
Stolzenberg, D. S., & Champagne, F. A. (2016). Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Hormones and Behavior, 77, 204-210. https://doi.org/10.1016/j.yhbeh.2015.07.005
Stolzenberg, D. S., & Mayer, H. S. (2019). Experience-dependent mechanisms in the regulation of parental care. Frontiers in Neuroendocrinology, 54, 100745. https://doi.org/10.1016/j.yfrne.2019.04.002
Swaney, W. T., Curley, J. P., Champagne, F. A., & Keverne, E. B. (2008). The paternally expressed gene Peg3 regulates sexual experience-dependent preferences for estrous odors. Behavioral Neuroscience, 122, 963-973. https://doi.org/10.1037/a0012706
Terkel, J., Bridges, R. S., & Sawyer, C. H. (1979). Effects of transecting lateral neural connections of the medial preoptic area on maternal behavior in the rat: Nest building, pup retrieval and prolactin secretion. Brain Research, 169(2), 369-380. https://doi.org/10.1016/0006-8993(79)91037-0
Thoueille, É., Candilis-Huisman, D., Soulé, M., & Vermillard, M. (2006). La maternité des femmes aveugles: Du désir d'enfant au bébé réel. La psychiatrie de l'enfant, 49, 285-348. https://doi.org/10.3917/psye.492.0285
Tobiansky, D. J., Roma, P. G., Hattori, T., Will, R. G., Nutsch, V. L., & Dominguez, J. M. (2013). The medial preoptic area modulates cocaine-induced activity in female rats. Behavioral Neuroscience, 127(2), 293-302. https://doi.org/10.1037/a0031949
Topalidis, P., Zinchenko, A., Gädeke, J. C., & Föcker, J. (2020). The role of spatial selective attention in the processing of affective prosodies in congenitally blind adults: An ERP study. Brain Research, 1739, 146819. https://doi.org/10.1016/j.brainres.2020.146819
Touj, S., Cloutier, S., Jemâa, A., Piché, M., Bronchti, G., & Al Aïn, S. (2020). Better olfactory performance and larger olfactory bulbs in a mouse model of congenital blindness. Chemical Senses, 45(7), 523-531. https://doi.org/10.1093/chemse/bjaa052
Touj, S., Gallino, D., Chakravarty, M. M., Bronchti, G., & Piché, M. (2021). Structural brain plasticity induced by early blindness. The European Journal of Neuroscience, 53(3), 778-795. https://doi.org/10.1111/ejn.15028
Touj, S., Paquette, T., Bronchti, G., & Piché, M. (2021). Early and late visual deprivation induce hypersensitivity to mechanical and thermal noxious stimuli in the ZRDBA mouse. European Journal of Pain (London, England), 25(10), 2257-2265. https://doi.org/10.1002/ejp.1839
Touj, S., Tokunaga, R., Al Aïn, S., Bronchti, G., & Piché, M. (2019). Pain hypersensitivity is associated with increased amygdala volume and c-Fos immunoreactivity in anophthalmic mice. Neuroscience, 418, 37-49. https://doi.org/10.1016/j.neuroscience.2019.08.035
Tucker, P., Laemle, L., Munson, A., Kanekar, S., Oliver, E. R., Brown, N., Schlecht, H., Vetter, M., & Glaser, T. (2001). The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/Rax homeobox gene. Genesis (New York, N.Y. : 2000), 31(1), 43-53. https://doi.org/10.1002/gene.10003
Uriarte, N., Ferreño, M., Méndez, D., & Nogueira, J. (2020). Reorganization of perineuronal nets in the medial preoptic area during the reproductive cycle in female rats. Scientific Reports, 10(1), 5479. https://doi.org/10.1038/s41598-020-62163-z
Vandenbergh, J. G. (1973). Effects of central and peripheral anosmia on reproduction of female mice. Physiology & behavior, 10(2), 257-261.
vom Saal, F. S., & Howard, L. S. (1982). The regulation of infanticide and parental behavior: Implications for reproductive success in male mice. Science (New York, N.Y.), 215(4537), 1270-1272. https://doi.org/10.1126/science.7058349
Voss, P., & Zatorre, R. J. (2012). Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cerebral Cortex (New York, N.Y.: 1991), 22(11), 2455-2465. https://doi.org/10.1093/cercor/bhr311
Weiss, J., Pyrski, M., Jacobi, E., Bufe, B., Willnecker, V., Schick, B., Zizzari, P., Gossage, S. J., Greer, C. A., Leinders-Zufall, T., Woods, C. G., Wood, J. N., & Zufall, F. (2011). Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature, 472(7342), 186-190. https://doi.org/10.1038/nature09975
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528-536. https://doi.org/10.1038/nn.3045
Zhang, C., Lee, T., Fu, Y., Ren, C., Chan, C., & Tao, Q. (2019). Properties of cross-modal occipital responses in early blindness: An ALE meta-analysis. NeuroImage. Clinical, 24, 102041. https://doi.org/10.1016/j.nicl.2019.102041
Zhou, Y., Fang, F. H., Pan, P., Liu, Z. R., & Ji, Y. H. (2017). Visual deprivation induce cross-modal enhancement of olfactory perception. Biochemical and Biophysical Research Communications, 486(3), 833-838. https://doi.org/10.1016/j.bbrc.2017.03.140