Neurophysiological alterations in mice and humans carrying mutations in APP and PSEN1 genes.

Autosomal dominant Alzheimer’s disease Functional brain imaging Local field potential (LFP) recordings Mouse models of Alzheimer’s disease Translational network neuroscience

Journal

Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643

Informations de publication

Date de publication:
22 08 2023
Historique:
received: 10 03 2023
accepted: 11 08 2023
medline: 24 8 2023
pubmed: 23 8 2023
entrez: 23 8 2023
Statut: epublish

Résumé

Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.

Sections du résumé

BACKGROUND
Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain.
METHODS
We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects.
RESULTS
APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers.
CONCLUSIONS
Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.

Identifiants

pubmed: 37608393
doi: 10.1186/s13195-023-01287-6
pii: 10.1186/s13195-023-01287-6
pmc: PMC10464047
doi:

Substances chimiques

Amyloidogenic Proteins 0
Presenilin-1 0
PSEN1 protein, human 0
APP protein, human 0
APP protein, mouse 0
Amyloid beta-Protein Precursor 0
presenilin 1, mouse 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

142

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Neural Plast. 2016;2016:7167358
pubmed: 27840743
Elife. 2017 Jan 24;6:
pubmed: 28117662
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8740-5
pubmed: 22592800
Hum Mol Genet. 2004 Jan 15;13(2):159-70
pubmed: 14645205
J Alzheimers Dis. 2010;22(3):873-87
pubmed: 20858963
Hippocampus. 2008;18(5):519-29
pubmed: 18398852
Brain. 2019 Apr 1;142(4):1051-1062
pubmed: 30847469
Sci Rep. 2019 Mar 29;9(1):5380
pubmed: 30926900
Sci Transl Med. 2019 Dec 4;11(521):
pubmed: 31801888
Neuropsychobiology. 2002;46(1):49-56
pubmed: 12207147
Neuroimage. 2020 Apr 1;209:116538
pubmed: 31935522
Biol Psychiatry. 2002 Oct 1;52(7):764-70
pubmed: 12372668
Neuron. 2018 Apr 4;98(1):75-89.e5
pubmed: 29551491
J Psychiatr Res. 1975 Nov;12(3):189-98
pubmed: 1202204
Neuroimage. 2012 Feb 15;59(4):3909-21
pubmed: 22122866
Nat Neurosci. 2018 Oct;21(10):1370-1379
pubmed: 30250265
Clin Neurophysiol. 2003 Oct;114(10):1902-7
pubmed: 14499752
Nat Neurosci. 2015 Nov;18(11):1623-30
pubmed: 26457554
Nature. 2016 Dec 7;540(7632):230-235
pubmed: 27929004
Neuroimage Clin. 2015 Aug 01;9:103-9
pubmed: 26448910
PLoS One. 2017 Jan 10;12(1):e0169654
pubmed: 28072877
Alzheimers Res Ther. 2022 Feb 26;14(1):38
pubmed: 35219327
J Alzheimers Dis. 2018;62(3):1091-1111
pubmed: 29562540
J Alzheimers Dis. 2022;87(1):317-333
pubmed: 35311705
Sci Rep. 2019 Nov 8;9(1):16363
pubmed: 31705038
Alzheimers Res Ther. 2020 Jun 3;12(1):68
pubmed: 32493476
Acta Neuropathol. 2017 May;133(5):717-730
pubmed: 28091722
J Alzheimers Dis. 2017;58(4):1229-1244
pubmed: 28550254
Electroencephalogr Clin Neurophysiol. 1991 Feb;78(2):89-96
pubmed: 1704840
Neuroimage. 2011 Apr 15;55(4):1548-65
pubmed: 21276857
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2895-903
pubmed: 22869752
Science. 2008 Sep 19;321(5896):1686-9
pubmed: 18802001
Sci Rep. 2023 May 7;13(1):7419
pubmed: 37150756
Front Hum Neurosci. 2016 May 20;10:238
pubmed: 27242496
Neurology. 2014 Jul 15;83(3):253-60
pubmed: 24928124
Heliyon. 2020 Sep 14;6(9):e04867
pubmed: 32984592
Curr Biol. 2012 Aug 21;22(16):R658-63
pubmed: 22917517
Dialogues Clin Neurosci. 2012 Dec;14(4):345-67
pubmed: 23393413
Nat Med. 1998 Jan;4(1):97-100
pubmed: 9427614
Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):409-17
pubmed: 9305290
Clin Neurophysiol. 2000 Apr;111(4):604-12
pubmed: 10727911
Clin Neurophysiol. 2017 Nov;128(11):2347-2357
pubmed: 28571910
PLoS One. 2017 May 22;12(5):e0178247
pubmed: 28542392
Neuroimage. 2022 Feb 15;247:118809
pubmed: 34906717
Neuropsychobiology. 2001;43(4):273-6
pubmed: 11340368
Front Neuroinform. 2015 Apr 08;9:7
pubmed: 25904861
J Neurosci. 2009 Oct 28;29(43):13613-20
pubmed: 19864573
Ann Neurol. 2022 Sep;92(3):464-475
pubmed: 35713198
Front Neurosci. 2022 Jun 14;16:782474
pubmed: 35784839
Nat Rev Neurol. 2022 Jul;18(7):389-399
pubmed: 35379951
Brain Res. 2002 Jul 12;943(2):181-90
pubmed: 12101040
Nat Rev Neurosci. 2012 May 18;13(6):407-20
pubmed: 22595786
Front Aging Neurosci. 2017 Apr 21;9:109
pubmed: 28484387
Sci Rep. 2017 Jul 26;7(1):6517
pubmed: 28747760
Clin Neurophysiol. 2017 Aug;128(8):1426-1437
pubmed: 28622527
JAMA Neurol. 2014 Sep;71(9):1111-22
pubmed: 25069482
Front Neurol. 2019 Nov 12;10:1151
pubmed: 31781019
Neuron. 2013 Nov 20;80(4):867-86
pubmed: 24267648
Brain. 2022 Nov 21;145(11):3776-3786
pubmed: 36281767
JAMA Neurol. 2021 Nov 1;78(11):1345-1354
pubmed: 34570177
Biomol Eng. 2001 Jun;17(6):157-65
pubmed: 11337275
Front Syst Neurosci. 2021 Feb 16;15:617388
pubmed: 33664653
Front Syst Neurosci. 2017 Jun 30;11:48
pubmed: 28713250
Front Comput Neurosci. 2018 Aug 23;12:60
pubmed: 30190674
Int J Mol Sci. 2020 Oct 30;21(21):
pubmed: 33143374
Clin Neurophysiol. 2009 May;120(5):910-5
pubmed: 19386543
Neurobiol Aging. 2017 Sep;57:133-142
pubmed: 28646686
Neuron. 2019 Jun 5;102(5):929-943.e8
pubmed: 31076275
Sci Adv. 2017 Feb 24;3(2):e1601068
pubmed: 28275722
Brain. 2018 May 1;141(5):1486-1500
pubmed: 29522171
J Neural Eng. 2017 Aug;14(4):045003
pubmed: 28169219
Alzheimer Dis Assoc Disord. 2010 Jan-Mar;24(1):1-10
pubmed: 19571730
Sci Rep. 2020 Jun 4;10(1):9132
pubmed: 32499487
Curr Alzheimer Res. 2010 Sep;7(6):487-505
pubmed: 20455865
Neuropsychopharmacology. 2016 Jul;41(8):2133-46
pubmed: 26797244
Ann Clin Transl Neurol. 2015 Oct 16;2(11):1012-28
pubmed: 26732627
Cell. 2012 Apr 27;149(3):708-21
pubmed: 22541439
Alzheimers Res Ther. 2022 Jul 25;14(1):101
pubmed: 35879779
Int J Psychophysiol. 2000 Dec 1;38(3):301-13
pubmed: 11102669
Nat Commun. 2019 Nov 22;10(1):5322
pubmed: 31757962
J Alzheimers Dis. 2019;70(1):241-256
pubmed: 31177214
Mol Psychiatry. 2020 Dec;25(12):3380-3398
pubmed: 31431685
Neurobiol Aging. 2018 Nov;71:127-141
pubmed: 30138766
J Alzheimers Dis. 2013;35(3):495-507
pubmed: 23478303
Front Genet. 2014 Apr 23;5:88
pubmed: 24795750
Brain. 2017 May 1;140(5):1466-1485
pubmed: 28334883
Front Psychiatry. 2018 May 22;9:201
pubmed: 29910746
Brain Commun. 2022 Feb 03;4(2):fcac012
pubmed: 35282163
Nat Neurosci. 2019 Jan;22(1):57-64
pubmed: 30559471
BMC Neurol. 2015 Aug 20;15:145
pubmed: 26289045
Acta Neuropathol Commun. 2014 Oct 21;2:149
pubmed: 25331068
Eur J Neurosci. 2014 Dec;40(11):3693-703
pubmed: 25288307
Acta Neuropathol Commun. 2022 Jun 23;10(1):92
pubmed: 35739575
Brain. 2018 Sep 1;141(9):2605-2618
pubmed: 30169585
J Biol Chem. 2018 Jun 1;293(22):8462-8472
pubmed: 29632073
Neurobiol Aging. 2020 Oct;94:121-129
pubmed: 32619873
Brain Res Bull. 2020 Aug;161:166-176
pubmed: 32473192
Neural Plast. 2015;2015:781731
pubmed: 25922768
Neurobiol Aging. 2016 Aug;44:96-107
pubmed: 27318137
Cereb Cortex. 2009 Mar;19(3):524-36
pubmed: 18567609
Sci Rep. 2022 May 11;12(1):7784
pubmed: 35546164
Cell. 2019 Apr 4;177(2):256-271.e22
pubmed: 30879788
Arq Neuropsiquiatr. 2011 Dec;69(6):875-81
pubmed: 22297871
Brain. 2018 May 1;141(5):1470-1485
pubmed: 29522156
Sci Data. 2022 May 23;9(1):225
pubmed: 35606461
J Alzheimers Dis. 2018;64(4):1325-1336
pubmed: 29991134
Sci Rep. 2016 Jan 28;6:20119
pubmed: 26818394
Neurobiol Aging. 2020 Dec;96:79-86
pubmed: 32950781
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4885-94
pubmed: 27469163
Front Aging Neurosci. 2018 Dec 06;10:400
pubmed: 30574086
Neurology. 2013 Aug 20;81(8):736-44
pubmed: 23884042
Nat Med. 2014 Dec;20(12):1485-92
pubmed: 25384087
Kybernetik. 1974 May 31;15(1):27-37
pubmed: 4853232
Nature. 2018 Mar 29;555(7698):657-661
pubmed: 29562238
Med Eng Phys. 2007 Dec;29(10):1073-83
pubmed: 17204443
Front Aging Neurosci. 2017 Apr 25;9:107
pubmed: 28487647
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499

Auteurs

Fran C van Heusden (FC)

Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.

Anne M van Nifterick (AM)

Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.
Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.

Bryan C Souza (BC)

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands.

Arthur S C França (ASC)

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands.
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands.

Ilse M Nauta (IM)

MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.

Cornelis J Stam (CJ)

Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.

Philip Scheltens (P)

Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.

August B Smit (AB)

Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.

Alida A Gouw (AA)

Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.
Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands.

Ronald E van Kesteren (RE)

Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands. Ronald.van.kesteren@vu.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH