Intermolecular n→π* Interactions in Supramolecular Chemistry and Catalysis.

We thank the National Natural Science Foundation of China (22371285, 91956126, 22171271) and Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202002) for financial support.

Journal

ChemPlusChem
ISSN: 2192-6506
Titre abrégé: Chempluschem
Pays: Germany
ID NLM: 101580948

Informations de publication

Date de publication:
Sep 2023
Historique:
revised: 19 08 2023
received: 14 06 2023
medline: 23 8 2023
pubmed: 23 8 2023
entrez: 23 8 2023
Statut: ppublish

Résumé

The n→π* interactions describing attractive force between lone pairs (lps) of nucleophile and carbonyl or polarized unsaturated bonds have recently attracted growing attentions in various disciplines. So far, such non-covalent driving force are mainly concentrated to intramolecular systems. Intermolecular n→π* interactions in principle could produce fascinated supramolecular systems or facilitate organic reactions, however, they remain largely underexplored due to the very weak energy of individual interaction. This review attempts to give an overview of the challenging intermolecular n→π* interactions, much efforts emphasize the supramolecular systems, catalytic processes and spectroscopic measurements.

Identifiants

pubmed: 37609956
doi: 10.1002/cplu.202300288
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300288

Subventions

Organisme : National Natural Science Foundation of China
ID : 22371285
Organisme : National Natural Science Foundation of China
ID : 91956126
Organisme : National Natural Science Foundation of China
ID : 22171271
Organisme : Beijing National Laboratory for Molecular Sciences
ID : BNLMS-CXXM-202002

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

 
E. Persch, O. Dumele, F. Diederich, Angew. Chem. Int. Ed. 2015, 54, 3290-3327;
Angew. Chem. 2015, 127, 3341-3382;
H.-J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924-3977;
Angew. Chem. 2009, 121, 3982-4036;
M. Breugst, D. von der Heiden, J. Schmauck, Synthesis 2017, 49, 3224-3236.
 
R. Paulini, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2005, 44, 1788-1805;
Angew. Chem. 2005, 117, 1820-1839;
R. W. Newberry, R. T. Raines, Acc. Chem. Res. 2017, 50, 1838-1846;
S. K. Singh, A. Das, Phys. Chem. Chem. Phys. 2015, 17, 9596-9612;
G. J. Bartlett, A. Choudhary, R. T. Raines, D. W. Woolfson, Nat. Chem. Biol. 2010, 6, 615-620;
R. W. Newberry, R. T. Raines, ACS Chem. Biol. 2019, 14, 1677-1686;
P. Panwaria, A. Das, Phys. Chem. Chem. Phys. 2022, 24, 22371-22389.
 
H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 5065-5067;
H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563-1572.
 
F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby, Acta Crystallogr. 1998, B54, 320-329;
A. Gavezzotti, J. Phys. Chem. 1990, 94, 4319-4325;
S. Lee, A. B. Mallik, D. C. Fredrickson, Cryst. Growth Des. 2004, 4, 279-290;
R. Shukla, D. Chopra, CrystEngComm. 2018, 20, 3308-3312.
L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider, R. T. Raines, J. Am. Chem. Soc. 2001, 123, 777-778.
 
M. L. DeRider, S. J. Wilens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines, J. L. Markley, J. Am. Chem. Soc. 2002, 124, 2497-2505;
G. J. Bartlett, A. Choudhary, R. T. Raines, D. N. Woolfson, Nat. Chem. Biol. 2010, 6, 615-620;
B. Khatri, P. Majumder, J. Nagesh, A. Penmatsa, J. ahatterjee, Chem. Sci. 2020, 11, 9480-9487;
R. S. Erdmann, H. Wennemers, J. Am. Chem. Soc. 2012, 134, 17117-17124;
I. León, E. R. Alonso, C. Cabezas, S. Mata, J. L. Alonso, Commun. Chem. 2019, 2, 3;
H. N. Hoang, C. Wu, T. A. Hill, A. D. de Araujo, P. V. Bernhardt, L. Liu, D. P. Fairlie, Angew. Chem. Int. Ed. 2019, 58, 18873-18877;
Angew. Chem. 2019, 131, 19049-19053;
M. Umashankara, M. V. Sonar, N. D. Bansode, K. N. Ganesh, J. Org. Chem. 2015, 80, 8552-8560;
B. C. Gorske, B. L. Bastian, G. D. Geske, H. E. Blackwell, J. Am. Chem. Soc. 2007, 129, 8928-8929;
T. Harris, D. M. Chenoweth, J. Am. Chem. Soc. 2019, 141, 18021-18029;
H. Chen, X. Tang, H. Ye, X. Wang, H. Zheng, Y. Hai, X. Cao, L. You, Org. Lett. 2021, 23, 231-235;
H. Wang, P. Kohler, L. E. Overman, K. N. Houk, J. Am. Chem. Soc. 2012, 134, 16054-16058;
E. C. Vik, P. Li, P. J. Pellechia, K. D. Shimizu, J. Am. Chem. Soc. 2019, 141, 16579-16583;
L.-S. Sonntag, S. Schweizer, C. Ochsenfeld, H. Wennemers, J. Am. Chem. Soc. 2006, 128, 14697-14703;
F. R. Fischer, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 8270-8273;
Angew. Chem. 2007,119, 8418-8421;
A. Rahim, B. Sahariah, B. K. Sarma, Org. Lett. 2018, 20, 5743-5746;
N. W. Polaske, G. S. Nichol, L. Z. Szabó, B. Olenyuk, Cryst. Growth Des. 2009, 9, 2191-2197.
 
A. Choudhary, C. G. Fry, K. J. Kamer, R. T. Raines, Chem. Commun. 2013, 49, 8166-8168;
C. Ni, D. Zha, H. Ye, Y. Hai, Y. Zhou, E. V. Anslyn, L. You, Angew. Chem. Int. Ed. 2018, 57, 1300-1305;
Angew. Chem. 2018, 130, 1314-1319;
T. Neveselý, J. J. Molloy, C. McLaughlin, L. Brüss, C. G. Daniliuc, R. Gilmour, Angew. Chem. Int. Ed. 2022, 61, e202113600;
Angew. Chem. 2022, 134, e202113600.
 
H. Zheng, H. Ye, X. Yu, L. You, J. Am. Chem. Soc. 2019, 141, 8825-8833;
H. Chen, H. Ye, Y. Hai, L. Zhang, L. You, Chem. Sci. 2020, 11, 2707-2715.
 
J. A. Olsen, D. W. Banner, P. Seiler, U. Obst-Sander, A. D'Arcy, M. Stihle, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 2507-2511;
Angew. Chem. 2003, 115, 2611-2615;
J. A. Olsen, D. W. Banner, P. Seiler, B. Wagner, T. Tschopp, U. Obst-Sander, M. Kansy, K. Müller, F. Diederich, ChemBioChem 2004, 5, 666-675;
E. Schweizer, A. Hoffmann-Röder, J. A. Olsen, U. Obst-Sander, B. Wagner, M. Kansy, D. W. Banner, F. Diederich, Org. Biomol. Chem. 2006, 4, 2364-2375.
J. Pollock, D. Borkin, G. Lund, T. Purohit, E. Dyguda-Kazimierowicz, J. Grembecka, T. Cierpicki, J. Med. Chem. 2015, 58, 7465-7474.
 
M. R. Bauer, R. N. Jones, M. G. J. Baud, R. Wilcken, F. M. Boeckler, A. R. Fersht, A. C. Joerger, J. Spencer, ACS Chem. Biol. 2016, 11, 2265-2274;
R. Kumar, M. M. Ignjatović, K. Peterson, M. Olsson, H. Leffler, U. Ryde, U. J. Nilsson, D. T. Logan, ChemMedChem 2019, 14, 1528-1536;
R. Unwalla, J. J. Mousseau, O. O. Fadeyi, C. Choi, K. Parris, B. Hu, T. Kenney, S. Chippari, C. McNally, K. Vishwanathan, E. Kilbourne, C. Thompson, S. Nagpal, J. Wrobel, M. Yudt, C. A. Morris, D. Powell, A. M. Gilbert, E. L. P. Chekler, J. Med. Chem. 2017, 60, 6451-6457.
J. S. Murray, P. Lane, T. Clark, K. E. Riley, P. Politzer, J. Mol. Model. 2012, 18, 541-548.
 
A. Choudhary, D. Gandla, G. R. Krow, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 7244-7246;
R. W. Newberry, B. VanVeller, I. A. Guzei, R. T. Raines, J. Am. Chem. Soc. 2013, 135, 7843-7846;
K. J. Kamer, A. Choudhary, R. T. Raines, J. Org. Chem. 2013, 78, 2099-2103.
 
F. Hof, D. M. Scofield, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2004, 43, 5056-5059;
Angew. Chem. 2004, 116, 5166-5169;
F. R. Fischer, P. A. Wood, F. H. Allen, F. Diederich, PNAS 2008, 105, 17290-17294.
 
K. B. Muchowska, D. J. Pascoe, S. Borsley, I. V. Smolyer, I. K. Mati, C. Adam, G. S. Nichol, K. B. Ling, S. L. Cockroft, Angew. Chem. Int. Ed. 2020, 59, 14602-14608;
Angew. Chem. 2020, 132, 14710-14716;
J. D. Velásquez, J. Echeverría, S. Alvarez, Cryst. Growth Des. 2019, 19, 6511-6518.
 
W. Bolton, Acta Crystallogr. 1963, 16, 166-173;
W. Bolton, Acta Crystallogr. 1964, 17, 147-152.
N. P. Funnell, C. L. Bull, C. J. Ridley, S. Parsons, J. P. Tellam, Chem. Commun. 2020, 56, 6428-6431.
 
A. Bauzá, T. J. Mooibroek, A. Frontera, Chem. Eur. J. 2014, 20, 10245-10248;
J. J. Roeleveld, S. J. L. Deprez, A. Verhoofstad, A. Frontera, J. I. van der Vlugt, T. J. Mooibroek, Chem. Eur. J. 2020, 26, 10126-10132;
E. C. Escudero-Adán, A. Bauzá, A. Frontera, P. Ballester, ChemPhysChem 2015, 16, 2530-2533.
C. Yin, H. Lu, H. Ye, Z. Feng, H. Zou, M. Zhang, L. You, Org. Lett. 2023, 25, 1470-1475.
K.-M. Lee, W.-Y. Cheng, C.-Y. Chen, J.-J. Shyue, C.-C. Nieh, C.-F. Chou, J.-R. Lee, Y.-Y. Lee, C.-Y. Cheng, S. Y. Chang, T. C. Yang, M.-C. Cheng, B.-Y. Lin, Nat. Commun. 2012, 4, 1544.
E. N. W. Howe, M. Bhadbhade, P. Thordarson, Aust. J. Chem. 2012, 65, 1384-1389.
J. Zhu, X.-D. Wang, Y.-F. Ao, Q.-Q. Wang, D.-X. Wang, Chem. Eur. J. 2023, e202203485.
I. Deneme, G. Liman, A. Can, G. Demirel, H. Usta, Nat. Commun. 2012, 12, 6119.
H. Zhang, Q. Li, S. Wang, X. Yu, B. Wang, G. Chen, L. Ren, J. Li, M. Jin, J. Yu, Nano Res. 2023, 16, 4170-4177.
W. Wang, X. Li, P.-P. Zhou, Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 22717-22721;
Angew. Chem. 2021, 133, 22899-22903.
D. A. Rincón, M. Doerr, M. C. Daza, ACS Omega 2021, 6, 20992-21004.
 
S. Blanco, J. C. López, J. Phys. Chem. Lett. 2018, 9, 4632-4637;
S. Blanco, A. Macario, J. C. López, Phys. Chem. Chem. Phys. 2019, 21, 20566-20570;
J. C. López, I. Alkorta, A. Macario, S. Blanco, Phys. Chem. Chem. Phys. 2022, 24, 15484-15493.
 
H. Wang, J. Wang, J. Che, S. Herbers, H. Zheng, Q. Gou, Phys. Chem. Chem. Phys. 2021, 23, 8778-8783;
L. Wang, T. Yang, Z. Wang, Y. Xu, G. Feng, Phys. Chem. Chem. Phys. 2022, 24, 28012-28018.
B. Sahariah, B. K. Sarma, Phys. Chem. Chem. Phys. 2020, 22, 26669-26681.
S. K. Singh, S. More, S. Kumar, K. K. Mishra, K. N. Ganesh, A. Das, Phys. Chem. Chem. Phys. 2019, 21, 4755-4762.
G. Spanka, R. Boese, P. Rademacher, J. Org. Chem. 1987, 52, 3362-3367.
J. Dutta, C. Routray, S. Pandey, H. S. Biswal, Chem. Sci. 2022, 13, 14327-14335.

Auteurs

Xu-Dong Wang (XD)

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Jun Zhu (J)

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

De-Xian Wang (DX)

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Classifications MeSH