Morpholine, a strong contender for Fmoc removal in solid-phase peptide synthesis.

Fmoc aspartimide diketopiperazine side reactions solid-phase peptide synthesis

Journal

Journal of peptide science : an official publication of the European Peptide Society
ISSN: 1099-1387
Titre abrégé: J Pept Sci
Pays: England
ID NLM: 9506309

Informations de publication

Date de publication:
23 Aug 2023
Historique:
revised: 28 07 2023
received: 16 06 2023
accepted: 31 07 2023
medline: 23 8 2023
pubmed: 23 8 2023
entrez: 23 8 2023
Statut: aheadofprint

Résumé

Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.

Identifiants

pubmed: 37609959
doi: 10.1002/psc.3538
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3538

Informations de copyright

© 2023 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

Références

Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals (Basel). 2022;16(3):336. doi:10.3390/ph16030336
de la Torre BG, Albericio F. The pharmaceutical industry in 2022: an analysis of FDA drug approvals from the perspective of molecules. Molecules. 2023;28(3):1038. doi:10.3390/molecules28031038
Bruckdorfer T, Marder O, Albericio F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol. 2004;5(1):29-43. doi:10.2174/1389201043489620
Srivastava V (Ed). Peptide therapeutics: strategy and tactics for chemistry, manufacturing, and controls. Royal Society of Chemistry; 2019.
Isidro-Llobet A, Kenworthy MN, Mukherjee S, et al. Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem. 2019;84(8):4615-4628. doi:10.1021/acs.joc.8b03001
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer PD. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv. 2020;10(69):42457-42492. doi:10.1039/D0RA07204D
Ferrazzano L, Catani M, Cavazzini A, et al. Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges. Green Chem. 2022;24(3):975-1020. doi:10.1039/D1GC04387K
Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M. Large-scale synthesis of peptides. Peptide Sci. 2000;55(3):227-250. doi:10.1002/1097-0282(2000)55:3%3C227::AID-BIP50%3E3.0.CO;2-7
Rasmussen JH. Synthetic peptide API manufacturing: A mini review of current perspectives for peptide manufacturing. Bioorg Med Chem. 2018;26(10):2914-2918. doi:10.1016/j.bmc.2018.01.018
Chan WC, White PD (Eds). Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press; 1999.
Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci. 2016;22(1):4-27. doi:10.1002/psc.2836
Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990;35(3):161-214. doi:10.1111/j.1399-3011.1990.tb00939.x
Li W, O'Brien-Simpson NM, Hossain MA, Wade JD. The 9-fluorenylmethoxycarbonyl (Fmoc) group in chemical peptide synthesis-its past, present, and future. Aust J Chem. 2020;73(4):271-276. doi:10.1071/CH19427
Williams R. pKa data compiled-organic division-(American Chemical Society). Accessed December 12, 2022. https://organicchemistrydata.org/hansreich/resources/pka/
SciFinder-Chemical Abstracts Service (American Chemical Society). 4-Methylpiperidine: substance details. Accessed December 12, 2022. https://scifinder-n.cas.org/searchDetail/substance/613f305061c4c4309f4ef34e/substanceDetails/
The European Chemical Agency. Brief profile for pyrrolidine. Accessed December 12, 2022. https://echa.europa.eu/brief-profile/-/briefprofile/100.004.227
Yang Y. Side reactions in peptide synthesis. Academic Press; 2015. doi:10.1016/B978-0-12-801009-9.00014-8
Henderson RK, Hill AP, Redman AM, Sneddon HF. Development of GSK's acid and base selection guides. Green Chem. 2015;17(2):945-949. doi:10.1039/C4GC01481B
Hachmann J, Lebl M. Alternative to piperidine in Fmoc solid-phase synthesis. J Comb Chem. 2006;8(2):149-149. doi:10.1021/cc050123l
Vergel Galeano CF, Rivera Monroy ZJ, Rosas Pérez JE, García Castañeda JE. Efficient synthesis of peptides with 4-methylpiperidine as Fmoc removal reagent by solid phase synthesis. J Mex Chem Soc. 2014;58(4):386-392. doi:10.29356/jmcs.v58i4.47
Luna OF, Gomez J, Cárdenas C, Albericio F, Marshall SH, Guzmán F. Deprotection reagents in Fmoc solid phase peptide synthesis: moving away from Piperidine? Molecules. 2016;21(11):1542. doi:10.3390/molecules21111542
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Solid-phase synthesis of C-terminus cysteine peptide acids. Org Process Res Dev. 2022;26(12):3323-3335. doi:10.1021/acs.oprd.2c00321
Yang Y, Hansen L. Optimized Fmoc-removal strategy to suppress the traceless and conventional diketopiperazine formation in solid-phase peptide synthesis. ACS Omega. 2022;7(14):12015-12020. doi:10.1021/acsomega.2c00214
Wade JD, Mathieu MN, Macris M, Tregear GW. Base-induced side reactions in Fmoc-solid phase peptide synthesis: minimization by use of piperazine as Nα-deprotection reagent. Lett Pept Sci. 2000;7(2):107-112. doi:10.1007/BF02443569
Ralhan K, Krishna Kumar VG, Gupta S. Piperazine and DBU: a safer alternative for rapid and efficient Fmoc deprotection in solid phase peptide synthesis. RSC Adv. 2015;5(126):104417-104425. doi:10.1039/C5RA23441G
Guryanov I, Orlandin A, Viola A, Biondi B, Formaggio F, Ricci A, Cabri W. Overcoming chemical challenges in the solid-phase synthesis of high-purity GnRH antagonist degarelix. Part 2. Org Process Res Dev. 2020; 24(2): 274-278. 10.1021/acs.oprd.9b00540
Egelund PHG, Jadhav S, Martin V, et al. Fmoc-removal with Pyrrolidine expands the available solvent space in green solid-phase peptide synthesis. ACS Sustainable Chem Eng. 2021;9(42):14202-14215. doi:10.1021/acssuschemeng.1c04770
Fields GB. Methods for removing the Fmoc group. In: Pennington MW, Dunn BM, eds. Peptide Synthesis Protocols. Humana Press; 1995:17-27. doi:10.1385/0-89603-273-6:17
Liebe B, Kunz H. Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the “tandem repeat” of the MUC-1 mucin. Angew Chem Int Ed Engl. 1997;36(6):618-621. doi:10.1002/anie.199706181
Přibylka A, Pastorek M, Grepl M, Schütznerová EP. The application of anisole in greener solid-phase peptide synthesis protocols-compatibility with green bases in Fmoc removal and new green binary mixture for coupling. Tetrahedron. 2021;99:132452. doi:10.1016/j.tet.2021.132452
Paulsen H, Merz G, Peters S, Weichert U. Festphasensynthese von O-Glycopeptiden. Liebigs Ann Chem. 1990;1990(12):1165-1173. doi:10.1002/jlac.1990199001214
Taichi M, Yamazaki T, Kimura T, Nishiuchi Y. Total synthesis of marinostatin, a serine protease inhibitor isolated from the marine bacterium Pseudoallteromonas sagamiensis. Tetrahedron Lett. 2009;50(20):2377-2380. doi:10.1016/j.tetlet.2009.02.213
Mochizuki M, Tsuda S, Tanimura K, Nishiuchi Y. Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org Lett. 2015;17(9):2202-2205. doi:10.1021/acs.orglett.5b00786
Meldal M, Jensen KJ. Pentafluorophenyl esters for the temporary protection of the α-carboxy group in solid phase glycopeptide synthesis. J Chem Soc Chem Commun. 1990;6(6):483-485. doi:10.1039/C39900000483
Ma. Jansson A, Meldal M, Back K. The active ester N-Fmoc-3-O-[Ac4-α-D-Manp-(1→2)-Ac3-α-D-Manp-1-]=Thre-O-Pfp as a building block in solid-phase synthesis of an O-linked dimannosyl glycopeptide. Tetrahedron Lett. 1990;31(48):6991-6994. doi:10.1016/S0040-4039(00)97224-1
Peters S, Bielfeldt T, Meldal M, Bock K, Paulsena H. Multiple column solid phase glycopeptide synthesis. Tetrahedron Lett. 1991;32(38):5067-5070. doi:10.1016/S0040-4039(00)93429-4
Sola R, Méry J, Pascal R. Fmoc-based solid-phase peptide synthesis using dpr(phoc) linker. Synthesis of a C-terminal proline peptide. Tetrahedron Lett. 1996;37(51):9195-9198. doi:10.1016/S0040-4039(96)02154-5
Martin V, Jadhav S, Egelund PHG, et al. Harnessing polarity and viscosity to identify green binary solvent mixtures as viable alternatives to DMF in solid-phase peptide synthesis. Green Chem. 2021;23(9):3295-3311. doi:10.1039/D1GC00603G
Paradís-Bas M, Tulla-Puche J, Albericio F. The road to the synthesis of “difficult peptides”. Chem Soc Rev. 2016;45(3):631-654. doi:10.1039/C5CS00680E
Jad YE, Acosta GA, Govender T, et al. Green solid-phase peptide synthesis 2. 2-Methyltetrahydrofuran and ethyl acetate for solid-phase peptide synthesis under green conditions. ACS Sustainable Chem Eng. 2016;4(12):6809-6814. doi:10.1021/acssuschemeng.6b01765
Pedroso E, Grandas A, de las Heras X, Eritja R, Giralt E. Diketopiperazine formation in solid phase peptide synthesis using p-alkoxybenzyl ester resins and Fmoc-amino acids. Tetrahedron Lett. 1986;27(6):743-746. doi:10.1016/S0040-4039(00)84089-7
Rovero P, Viganò S, Pegoraro S, Quartara L. Synthesis of the bradykinin B1 antagonist [desArg10]HOE 140 on 2-chlorotrityl resin. Lett Pept Sci. 1996;2(6):319-323. doi:10.1007/BF00119994
Alcaro MC, Sabatino G, Uziel J, et al. On-resin head-to-tail cyclization of cyclotetrapeptides: optimization of crucial parameters. J Pept Sci. 2004;10(4):218-228. doi:10.1002/psc.512
Tulla-Puche J, Bayó-Puxan N, Moreno JA, et al. Solid-phase synthesis of oxathiocoraline by a key intermolecular disulfide dimer. J Am Chem Soc. 2007;129(17):5322-5323. doi:10.1021/ja0686312
Wang J, Berglund MR, Braden T, et al. Mechanistic study of diketopiperazine formation during solid-phase peptide synthesis of tirzepatide. ACS Omega. 2022;7(50):46809-46824. doi:10.1021/acsomega.2c05915
Mergler M, Dick F, Sax B, Weiler P, Vorherr T. Systematic Investigation of the aspartimide problem. In: California USA, Lebl M, Houghten RA, eds. Peptides: The Wave of the Future: Proceedings of the Second International and the Seventeenth American Peptide Symposium, June 9-14, 2001, San Diego. Dordrecht; 2001:63-64.
Subirós-Funosas R, El-Faham A, Albericio F. Aspartimide formation in peptide chemistry: occurrence, prevention strategies and the role of N-hydroxylamines. Tetrahedron. 2011;67(45):8595-8606. doi:10.1016/j.tet.2011.08.046
Karlström A, Undén A. A new protecting group for aspartic acid that minimizes piperidine-catalyzed aspartimide formation in Fmoc solid phase peptide synthesis. Tetrahedron Lett. 1996;37(24):4243-4246. doi:10.1016/0040-4039(96)00807-6
Mergler M, Dick F, Sax B, Weiler P, Vorherr T. The aspartimide problem in Fmoc-based SPPS. Part I. J Pept Sci. 2003;9(1):36-46. doi:10.1002/psc.430
Mergler M, Dick F. The aspartimide problem in Fmoc-based SPPS part III. J Pept Sci. 2005;11(10):650-657. doi:10.1002/psc.668
Samson D, Rentsch D, Minuth M, Meier T, Loidl G. The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones. J Pept Sci. 2019;25(7):e3193. doi:10.1002/psc.3193
Neumann K, Farnung J, Baldauf S, Bode JW. Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups. Nat Commun. 2020;11(1):982. doi:10.1038/s41467-020-14755-6
Packman LC. N-2-Hydroxy-4-methoxybenzyl (Hmb) backbone protection strategy prevents double aspartimide formation in a ‘difficult’ peptide sequence. Tetrahedron Lett. 1995;36(41):7523-7526. doi:10.1016/0040-4039(95)01522-1
Isidro-Llobet A, Just-Baringo X, Álvarez M, Albericio F. EDOTn and MIM, new peptide backbone protecting groups. Peptide Sci. 2008;90(3):444-449. doi:10.1002/bip.20823
Abdel-Aal A-BM, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J. A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation. J Pept Sci. 2016;22(5):360-367. doi:10.1002/psc.2877
Mergler M, Dick F, Sax B, Stähelin C, Vorherr T. The aspartimide problem in Fmoc-based SPPS part II. J Pept Sci. 2003;9(8):518-526. doi:10.1002/psc.473
Subirós-Funosas R, El-Faham A, Albericio F. Use of Oxyma as pH modulatory agent to be used in the prevention of base-driven side reactions and its effect on 2-chlorotrityl chloride resin. Peptide Sci. 2012;98(2):89-97. doi:10.1002/bip.21713
Personne H, Siriwardena TN, Javor S, Reymond J-L. Dipropylamine for 9-fluorenylmethyloxycarbonyl (Fmoc) deprotection with reduced aspartimide formation in solid-phase peptide synthesis. ACS Omega. 2023;8(5):5050-5056. doi:10.1021/acsomega.2c07861
Kumar A, Alhassan M, Lopez J, Albericio F, de la Torre BG. N-Butylpyrrolidinone for solid-phase peptide synthesis is environmentally friendlier and synthetically better than DMF. ChemSusChem. 2020;13(19):5288-5294. doi:10.1002/cssc.202001647
Jadhav S, Martin V, Egelund PHG, et al. Replacing DMF in solid-phase peptide synthesis: varying the composition of green binary solvent mixtures as a tool to mitigate common side-reactions. Green Chem. 2021;23(9):3312-3321. doi:10.1039/D1GC00604E
Kaneshiro CM, Michael K. A convergent synthesis of N-glycopeptides. Angew Chem Int Ed. 2006;45(7):1077-1081. doi:10.1002/anie.200502687
Pawlas J, Rasmussen JH. ReGreen SPPS: enabling circular chemistry in environmentally sensible solid-phase peptide synthesis. Green Chem. 2019;21(21):5990-5998. doi:10.1039/c9gc02775k

Auteurs

Sinenhlanhla N Mthembu (SN)

Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

Amit Chakraborty (A)

Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.

Ralph Schönleber (R)

Bachem AG, Bubendorf, Switzerland.

Fernando Albericio (F)

Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.

Beatriz G de la Torre (BG)

Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

Classifications MeSH