Oligodendrocyte progenitor cells differentiation induction with MAPK/ERK inhibitor fails to support repair processes in the chronically demyelinated CNS.
EAE
OPC
microglia
multiple sclerosis
oligodendrocyte
remyelination
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
23
07
2023
received:
05
03
2023
accepted:
24
07
2023
pubmed:
23
8
2023
medline:
23
8
2023
entrez:
23
8
2023
Statut:
ppublish
Résumé
Remyelination failure is considered a major obstacle in treating chronic-progressive multiple sclerosis (MS). Studies have shown blockage in the differentiation of resident oligodendrocyte progenitor cells (OPC) into myelin-forming cells, suggesting that pushing OPC into a differentiation program might be sufficient to overcome remyelination failure. Others stressed the need for a permissive environment to allow proper activation, migration, and differentiation of OPC. PD0325901, a MAPK/ERK inhibitor, was previously shown to induce OPC differentiation, non-specific immunosuppression, and a significant therapeutic effect in acute demyelinating MS models. We examined PD0325901 effects in the chronically inflamed central nervous system. Treatment with PD0325901 induced OPC differentiation into mature oligodendrocytes with high morphological complexity. However, treatment of Biozzi mice with chronic-progressive experimental autoimmune encephalomyelitis with PD0325901 showed no clinical improvement in comparison to the control group, no reduction in demyelination, nor induction of OPC migration into foci of demyelination. PD0325901 induced a direct general immunosuppressive effect on various cell populations, leading to a diminished phagocytic capability of microglia and less activation of lymph-node cells. It also significantly impaired the immune-modulatory functions of OPC. Our findings suggest OPC regenerative function depends on a permissive environment, which may include pro-regenerative inflammatory elements. Furthermore, they indicate that maintaining a delicate balance between the pro-myelinating and immune functions of OPC is of importance. Thus, the highly complex mission of creating a pro-regenerative environment depends upon an appropriate immune response controlled in time, place, and intensity. We suggest the need to employ a multi-systematic therapeutic approach, which cannot be achieved through a single molecule-based therapy.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2815-2831Informations de copyright
© 2023 The Authors. GLIA published by Wiley Periodicals LLC.
Références
Akay, L. A., Effenberger, A. H., & Tsai, L.-H. (2021). Cell of all trades: Oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes & Development, 35, 180-198. https://doi.org/10.1101/gad.344218.120
Arad, T., Fainstein, N., Goldfarb, S., Lachish, M., Ganz, T., & Ben-Hur, T. (2021). CD200-dependent and -independent immune-modulatory functions of neural stem cells. Stem Cell Research, 56, 102559. https://doi.org/10.1016/J.SCR.2021.102559
Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., & Ortiz-De-Solorzano, C. (2010). 3D reconstruction of histological sections: Application to mammary gland tissue. Microscopy Research and Technique., 73, 1019-1029. https://doi.org/10.1002/jemt.20829
Baaklini, C. S., Rawji, K. S., Duncan, G. J., Ho, M. F. S., & Plemel, J. R. (2019). Central nervous system remyelination: Roles of glia and innate immune cells. Frontiers in Molecular Neuroscience, 12, 225-243. https://doi.org/10.3389/fnmol.2019.00225
Baer, A. S., Syed, Y. A., Kang, S. U., Mitteregger, D., Vig, R., Ffrench-Constant, C., Franklin, R. J. M., Altmann, F., Lubec, G., & Kotter, M. R. (2009). Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 132, 465-481. https://doi.org/10.1093/brain/awn334
Barateiro, A., & Fernandes, A. (2014). Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochimica et Biophysica Acta - Molecular Cell Research., 1843, 1917-1929. https://doi.org/10.1016/j.bbamcr.2014.04.018
Baron, W., de Jonge, J. C., de Vries, H., & Hoekstra, D. (1998). Regulation of oligodendrocyte differentiation: Protein kinase C activation prevents differentiation of O2A progenitor cells toward oligodendrocytes. Glia, 22(2), 121-129. https://doi.org/10.1002/(SICI)1098-1136(199802)22:2<121::AID-GLIA3>3.0.CO;2-A
Behar, T. N. (2001). Analysis of fractal dimension of 02A glial cells differentiating in vitro. Methods, 24, 331-339. https://doi.org/10.1006/meth.2001.1203
Ben-Hur, T., Einstein, O., Mizrachi-Kol, R., Ben-Menachem, O., Reinhartz, E., Karussis, D., & Abramsky, O. (2003). Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia, 41(1), 73-80. https://doi.org/10.1002/glia.10159
Boccazzi, M., Raffaele, S., & Fumagalli, M. (2022). Not only myelination: The immune-inflammatory functions of oligodendrocytes. Neural Regeneration Research, 17(12), 2661-2663. https://doi.org/10.4103/1673-5374.342678
Bove, R. M., & Green, A. J. (2017). Remyelinating pharmacotherapies in multiple sclerosis. Neurotherapeutics, 14(4), 894-904. https://doi.org/10.1007/s13311-017-0577-0
Boyd, A., Zhang, H., & Williams, A. (2013). Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathologica, 125(6), 841-859. https://doi.org/10.1007/s00401-013-1112-y
Bramow, S., Frischer, J. M., Lassmann, H., Koch-Henriksen, N., Lucchinetti, C. F., Sørensen, P. S., & Laursen, H. (2010). Demyelination versus remyelination in progressive multiple sclerosis. Brain, 133, 2983-2998. https://doi.org/10.1093/brain/awq250
Chang, A., Nishiyama, A., Peterson, J., Prineas, J., & Trapp, B. D. (2000). NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. Journal of Neuroscience, 20, 6404-6412. https://doi.org/10.1523/jneurosci.20-17-06404.2000
Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., & Lu, Q. R. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2, 1044-1051. https://doi.org/10.1038/nprot.2007.149
Chu, F., Shi, M., Zheng, C., Shen, D., Zhu, J., Zheng, X., & Cui, L. (2018). The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 318, 1-7. https://doi.org/10.1016/J.JNEUROIM.2018.02.015
Chu, T., Shields, L. E., Zeng, W., Zhang, Y., Wang, Y., Barnes, G., Shields, C., & Cai, J. (2021). Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes. Neural Regeneration Research, 16(7), 1359-1368. https://doi.org/10.4103/1673-5374.300975
Confavreux, C., Vukusic, S., Moreau, T., & Adeleine, P. (2000). Relapses and progression of disability in multiple sclerosis. New England Journal of Medicine., 343, 1430-1438. https://doi.org/10.1056/nejm200011163432001
Dawson, M. R. L., Polito, A., Levine, J. M., & Reynolds, R. (2003). NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neuroscience, 24(2), 476-488. https://doi.org/10.1016/S1044-7431(03)00210-0
Dombrowski, Y., O'Hagan, T., DIttmer, M., Penalva, R., Mayoral, S. R., Bankhead, P., Fleville, S., Eleftheriadis, G., Zhao, C., Naughton, M., Hassan, R., Moffat, J., Falconer, J., Boyd, A., Hamilton, P., Allen, I. v., Kissenpfennig, A., Moynagh, P. N., Evergren, E., … Fitzgerald, D. C. (2017). Regulatory T cells promote myelin regeneration in the central nervous system. Nature Neuroscience, 20, 674-680. https://doi.org/10.1038/nn.4528
Domingues, H. S., Portugal, C. C., Socodato, R., & Relvas, J. B. (2016). Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Frontiers in Cell and Developmental Biology, 4, 71-87. https://doi.org/10.3389/fcell.2016.00071
Dyck, S., Kataria, H., Akbari-Kelachayeh, K., Silver, J., & Karimi-Abdolrezaee, S. (2019). LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia, 67, 125-145. https://doi.org/10.1002/glia.23533
El Behi, M., Sanson, C., Bachelin, C., Guillot-Noël, L., Fransson, J., Stankoff, B., Maillart, E., Sarrazin, N., Guillemot, V., Abdi, H., Cournu-Rebeix, I., Fontaine, B., & Zujovic, V. (2017). Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain, 140(4), 967-980. https://doi.org/10.1093/brain/awx008
Fainstein, N., Einstein, O., Cohen, M. E., Brill, L., Lavon, I., & Ben-Hur, T. (2013). Time limited immunomodulatory functions of transplanted neural precursor cells. Glia, 61(2), 140-149. https://doi.org/10.1002/glia.22420
Faissner, S., Plemel, J. R., Gold, R., & Yong, V. W. (2019). Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nature Reviews Drug Discovery, 18, Issue 12, 905-922. https://doi.org/10.1038/s41573-019-0035-2
Falcão, A. M., van Bruggen, D., Marques, S., Meijer, M., Jäkel, S., Agirre, E., Samudyata, S., Floriddia, E. M., Vanichkina, D. P., Ffrench-Constant, C., Williams, A., Guerreiro-Cacais, A. O., & Castelo-Branco, G. (2018). Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nature Medicine., 24, 1837-1844. https://doi.org/10.1038/s41591-018-0236-y
Foote, A. K., & Blakemore, W. F. (2005). Inflammation stimulates remyelination in areas of chronic demyelination. Brain, 128, 528-539. https://doi.org/10.1093/brain/awh417
Franklin, R. J. M. (2002). Why does remyelination fail in multiple sclerosis? Nature Reviews Neuroscience., 3, 705-714. https://doi.org/10.1038/nrn917
Franklin, R. J. M., & Ffrench-Constant, C. (2008). Remyelination in the CNS: From biology to therapy. Nature Reviews Neuroscience., 9, 839-855. https://doi.org/10.1038/nrn2480
Franklin, R. J. M., & Ffrench-Constant, C. (2017). Regenerating CNS myelin - From mechanisms to experimental medicines. In. Nature Reviews Neuroscience, 18(12), 753-769. https://doi.org/10.1038/nrn.2017.136
Franklin, R. J. M., Frisén, J., & Lyons, D. A. (2021). Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Seminars in Cell and Developmental Biology, 116, 3-9. https://doi.org/10.1016/j.semcdb.2020.09.009
Franklin, R. J. M., & Goldman, S. A. (2015). Glia disease and repair-Remyelination. Cold Spring Harbor Perspectives in Biology, 7(7), 1-29. https://doi.org/10.1101/cshperspect.a020594
Ganz, T., Fainstein, N., & Ben-Hur, T. (2022). When the infectious environment meets the AD brain. Molecular Neurodegeneration, 17(1), 53. https://doi.org/10.1186/s13024-022-00559-3
Ganz, T., Fainstein, N., Elad, A., Lachish, M., Goldfarb, S., Einstein, O., & Ben-Hur, T. (2022). Microbial pathogens induce neurodegeneration in Alzheimer's disease mice: Protection by microglial regulation. Journal of Neuroinflammation, 19(1), 1-15. https://doi.org/10.1186/S12974-021-02369-8
Goldfarb, S., Fainstein, N., & Ben-Hur, T. (2020). Electroconvulsive stimulation attenuates chronic neuroinflammation. JCI Insight, 5(17), 1-15. https://doi.org/10.1172/JCI.INSIGHT.137028
Goldfarb, S., Fainstein, N., Ganz, T., Vershkov, D., Lachish, M., & Ben-Hur, T. (2021). Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling. Brain, Behavior, and Immunity, 96, 40-53. https://doi.org/10.1016/j.bbi.2021.05.007
Green, A. J., Gelfand, J. M., Cree, B. A., Bevan, C., Boscardin, W. J., Mei, F., Inman, J., Arnow, S., Devereux, M., Abounasr, A., Nobuta, H., Zhu, A., Friessen, M., Gerona, R., von Büdingen, H. C., Henry, R. G., Hauser, S. L., & Chan, J. R. (2017). Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): A randomised, controlled, double-blind, crossover trial. The Lancet, 390(10111), 2481-2489. https://doi.org/10.1016/S0140-6736(17)32346-2
Gruchot, J., Weyers, V., Göttle, P., Förster, M., Hartung, H.-P., Küry, P., & Kremer, D. (2019). The molecular basis for remyelination failure in multiple sclerosis. Cell, 8(8), 825. https://doi.org/10.3390/cells8080825
Huang, W., Bhaduri, A., Velmeshev, D., Wang, S., Wang, L., Rottkamp, C. A., Alvarez-Buylla, A., Rowitch, D. H., & Kriegstein, A. R. (2020). Origins and proliferative states of human oligodendrocyte precursor cells. Cell, 182(3), 594-608.e11. https://doi.org/10.1016/j.cell.2020.06.027
Hughes, E. G., Kang, S. H., Fukaya, M., & Bergles, D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature Neuroscience., 16, 668-676. https://doi.org/10.1038/nn.3390
Hughes, S. E., Spelman, T., Gray, O. M., Boz, C., Trojano, M., Lugaresi, A., Izquierdo, G., Duquette, P., Girard, M., Grand'Maison, F., Grammond, P., Oreja-Guevara, C., Hupperts, R., Bergamaschi, R., Giuliani, G., Lechner-Scott, J., Barnett, M., Edite Rio, M., van Pesch, V., … Butzkueven, H. (2014). Predictors and dynamics of postpartum relapses in women with multiple sclerosis. Multiple Sclerosis Journal, 20, 739-746. https://doi.org/10.1177/1352458513507816
Jiang, Z., Jiang, J. X., & Zhang, G. X. (2014). Macrophages: A double-edged sword in experimental autoimmune encephalomyelitis. Immunology Letters, 160, 17-22. https://doi.org/10.1016/j.imlet.2014.03.006
Kang, Z., Wang, C., Zepp, J., Wu, L., Sun, K., Zhao, J., Chandrasekharan, U., Dicorleto, P. E., Trapp, B. D., Ransohoff, R. M., & Li, X. (2013). Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2 + glial cells. Nature Neuroscience., 16, 1401-1408. https://doi.org/10.1038/nn.3505
Kataria, H., Alizadeh, A., Shahriary, G. M., Saboktakin Rizi, S., Henrie, R., Santhosh, K. T., Thliveris, J. A., & Karimi-Abdolrezaee, S. (2018). Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia, 66, 538-561. https://doi.org/10.1002/glia.23264
Khademi, M., Dring, A. M., Gilthorpe, J. D., Wuolikainen, A., al Nimer, F., Harris, R. A., Andersson, M., Brundin, L., Piehl, F., Olsson, T., & Svenningsson, A. (2013). Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: A reflection by cerebrospinal fluid biomarkers. PLoS One, 8, e63172. https://doi.org/10.1371/journal.pone.0063172
Kipp, M., van der Star, B., Vogel, D. Y. S., Puentes, F., van der Valk, P., Baker, D., & Amor, S. (2012). Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Multiple Sclerosis and Related Disorders, 1(1), 15-28. https://doi.org/10.1016/J.MSARD.2011.09.002
Kirby, L., & Castelo-Branco, G. (2020). Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Seminars in Cell and Developmental Biology., 116, 45-52. https://doi.org/10.1016/j.semcdb.2020.10.013
Kirby, L., Jin, J., Cardona, J. G., Smith, M. D., Martin, K. A., Wang, J., Strasburger, H., Herbst, L., Alexis, M., Karnell, J., Davidson, T., Dutta, R., Goverman, J., Bergles, D., & Calabresi, P. A. (2019). Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nature Communications, 10, 3887. https://doi.org/10.1038/s41467-019-11638-3
Kotter, M. R., Li, W. W., Zhao, C., & Franklin, R. J. M. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. Journal of Neuroscience, 26, 328-332. https://doi.org/10.1523/JNEUROSCI.2615-05.2006
Kotter, M. R., Setzu, A., Sim, F. J., van Rooijen, N., & Franklin, R. J. M. (2001). Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia, 35, 204-212. https://doi.org/10.1002/glia.1085
Kotter, M. R., Stadelmann, C., & Hartung, H. P. (2011). Enhancing remyelination in disease - Can we wrap it up? Brain, 134(7), 1882-1900. https://doi.org/10.1093/brain/awr014
Lachish, M., Fainstein, N., Ganz, T., Sofer, L., & Ben-Hur, T. (2022). Failure of Alzheimer's mice brain resident neural precursor cells in supporting microglia-mediated amyloid β clearance. Cells, 11(5), 1-20. https://doi.org/10.3390/CELLS11050876
Lassmann, H. (2018). Multiple sclerosis. Pathology, 8, 1-16. https://doi.org/10.1101/cshperspect.a028936
Lassmann, H., Brück, W., Lucchinetti, C., & Rodriguez, M. (1997). Remyelination in multiple sclerosis. Multiple Sclerosis., 3, 133-136. https://doi.org/10.1177/135245859700300213
Lassmann, H., van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews Neurology., 8, 647-656. https://doi.org/10.1038/nrneurol.2012.168
Magliozzi, R., Howell, O. W., Nicholas, R., Cruciani, C., Castellaro, M., Romualdi, C., Rossi, S., Pitteri, M., Benedetti, M. D., Gajofatto, A., Pizzini, F. B., Montemezzi, S., Rasia, S., Capra, R., Bertoldo, A., Facchiano, F., Monaco, S., Reynolds, R., & Calabrese, M. (2018). Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of Neurology, 83, 739-755. https://doi.org/10.1002/ana.25197
Manousi, A., & Küry, P. (2021). Small molecule screening as an approach to encounter inefficient myelin repair. Current Opinion in Pharmacology, 61, 127-135. https://doi.org/10.1016/j.coph.2021.09.008
McMurran, C. E., Jones, C. A., Fitzgerald, D. C., & Franklin, R. J. M. (2016). CNS remyelination and the innate immune system. Frontiers in Cell and Developmental Biology, 4, 38-46. https://doi.org/10.3389/fcell.2016.00038
Meijer, M., Agirre, E., Kabbe, M., van Tuijn, C., Heskol, A., Falcão, A. M., Corces, M. R., Montine, T., Chen, X., Chang, H., & Castelo-Branco, G. (2020). A primed immune transcriptional program is activated in oligodendroglia in multiple sclerosis. bioRXiv, 1-23. https://doi.org/10.1101/2020.07.21.213876
Miron, V. E., & Franklin, R. J. M. (2014). Macrophages and CNS remyelination. Journal of Neurochemistry, 130(2), 165-171. https://doi.org/10.1111/JNC.12705
Moyon, S., Dubessy, A. L., Aigrot, M. S., Trotter, M., Huang, J. K., Dauphinot, L., Potier, M. C., Kerninon, C., Parsadaniantz, S. M., Franklin, R. J. M., & Lubetzki, C. (2015). Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. Journal of Neuroscience., 35, 4-20. https://doi.org/10.1523/JNEUROSCI.0849-14.2015
Nishri, Y., Fainstein, N., Goldfarb, S., Hampton, D., Macrini, C., Meinl, E., Chandran, S., & Ben-Hur, T. (2021). Modeling compartmentalized chronic immune-mediated demyelinating CNS disease in the Biozzi ABH mouse. Journal of Neuroimmunology, 356, 577582. https://doi.org/10.1016/j.jneuroim.2021.577582
Nishri, Y., Hampton, D., Ben-Shushan, E., Fainstein, N., Magnani, D., Aharonowiz, M., Reubinoff, B. E., Chandran, S., & Ben-Hur, T. (2020). Continuous immune-modulatory effects of human Olig2+ precursor cells attenuating a chronic-active model of multiple sclerosis. Molecular Neurobiology, 57(2), 1021-1034. https://doi.org/10.1007/s12035-019-01802-7
Patani, R., Balaratnam, M., Vora, A., & Reynolds, R. (2007). Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathology and Applied Neurobiology., 33, 277-287. https://doi.org/10.1111/j.1365-2990.2007.00805.x
Pedraza, C. E., Taylor, C., Pereira, A., Seng, M., Tham, C. S., Izrael, M., & Webb, M. (2014). Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of Rho-associated kinase. ASN Neuro, 6(4), 175909141453813. https://doi.org/10.1177/1759091414538134
Peferoen, L. A. N., Breur, M., van de Berg, S., Peferoen-Baert, R., Boddeke, E. H. W. G. M., van der Valk, P., Pryce, G., van Noort, J. M., Baker, D., & Amor, S. (2016). Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice. Immunology, 149(2), 146-156. https://doi.org/10.1111/IMM.12644
Poirion, E., Tonietto, M., Lejeune, F.-X., Ricigliano, V. A. G., Boudot de la Motte, M., Benoit, C., Bera, G., Kuhnast, B., Bottlaender, M., Bodini, B., & Stankoff, B. (2021). Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology, 96, e1865-e1875. https://doi.org/10.1212/wnl.0000000000011700
Quan, L., Uyeda, A., & Muramatsu, R. (2022). Central nervous system regeneration: The roles of glial cells in the potential molecular mechanism underlying remyelination. Inflammation and Regeneration, 42(1), 7. https://doi.org/10.1186/s41232-022-00193-y
Raft, M. C., Miller, R. H., & Noble, M. (1983). A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303(5916), 390-396.
Rosenberg, S. S., Kelland, E. E., Tokar, E., de La Torre, A. R., & Chan, J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America., 105, 14662-14667. https://doi.org/10.1073/pnas.0805640105
Ruckh, J. M., Zhao, J. W., Shadrach, J. L., van Wijngaarden, P., Rao, T. N., Wagers, A. J., & Franklin, R. J. M. (2012). Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell, 10, 96-103. https://doi.org/10.1016/j.stem.2011.11.019
Schwartz, M., & Kipnis, J. (2002). Multiple sclerosis as a by-product of the failure to sustain protective autoimmunity: A paradigm shift. Neuroscientist., 8, 405-413. https://doi.org/10.1177/107385802236966
Setzu, A., Lathia, J. D., Zhao, C., Wells, K., Rao, M. S., Ffrench-Constant, C., & Franklin, R. J. M. (2006). Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia, 54, 297-303. https://doi.org/10.1002/glia.20371
Suo, N., Guo, Y. e., He, B., Gu, H., & Xie, X. (2019). Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia, 67, 1320-1332. https://doi.org/10.1002/glia.23606
Syed, Y. A., Baer, A. S., Lubec, G., Hoeger, H., Widhalm, G., & Kotter, M. R. (2008). Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurgical Focus., 24, E5. https://doi.org/10.3171/FOC/2008/24/3-4/E3
Tepavčevic ̈, V., Kerninon, C., Aigrot, M. S., Meppiel, E., Mozafari, S., Arnould-Laurent, R., Ravassard, P., Kennedy, T. E., Nait-Oumesmar, B., & Lubetzki, C. (2014). Early netrin-1 expression impairs central nervous system remyelination. Annals of Neurology, 76(2), 252-268. https://doi.org/10.1002/ana.24201
Tepavčević, V., & Lubetzki, C. (2022). Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: The more, the merrier? Brain, 145(12), 4178-4192. https://doi.org/10.1093/BRAIN/AWAC307
Tosic, M., Torch, S., Comte, V., Dolivo, M., Honegger, P., & Matthieu, J.-M. (1992). Triiodothyronine has diverse and multiple stimulating effects on expression of the major myelin protein genes. Journal of Neurochemistry, 59, 1770-1777. https://doi.org/10.1111/j.1471-4159.1992.tb11009.x
Vella, L. J., Pasam, A., Dimopoulos, N., Andrews, M., Knights, A., Puaux, A. L., Louahed, J., Chen, W., Woods, K., & Cebon, J. S. (2014). MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunology Research, 2(4), 351-360. https://doi.org/10.1158/2326-6066.CIR-13-0181
Wang, P. S., Wang, J., Xiao, Z. C., & Pallen, C. J. (2009). Protein-tyrosine phosphatase α acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination. Journal of Biological Chemistry, 284(48), 33692-33702. https://doi.org/10.1074/jbc.M109.061770
Wolswijk, G. (2002). Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain, 125, 338-349. https://doi.org/10.1093/brain/awf031
Zeis, T., Enz, L., & Schaeren-Wiemers, N. (2016). The immunomodulatory oligodendrocyte. Brain Research., 1641, 139-148. https://doi.org/10.1016/j.brainres.2015.09.021
Zhao, C., Li, W. W., & Franklin, R. J. M. (2006). Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiology of Aging., 27, 1298-1307. https://doi.org/10.1016/j.neurobiolaging.2005.06.008
Zveik, O., Fainstein, N., Rechtman, A., Haham, N., Ganz, T., Lavon, I., Brill, L., & Vaknin-Dembinsky, A. (2022). Cerebrospinal fluid of progressive multiple sclerosis patients reduces differentiation and immune functions of oligodendrocyte progenitor cells. Glia, 70(6), 1191-1209. https://doi.org/10.1002/glia.24165
Zveik, O., Rechtman, A., Haham, N., Adini, I., Canello, T., Lavon, I., Brill, L., & Vaknin-Dembinsky, A. (2022). Sera of neuromyelitis optica patients increase BID-mediated apoptosis in astrocytes. International Journal of Molecular Sciences, 23(13), 7117. https://doi.org/10.3390/ijms23137117