AI Tools for Assessing Human Fertility Using Risk Factors: A State-of-the-Art Review.


Journal

Journal of medical systems
ISSN: 1573-689X
Titre abrégé: J Med Syst
Pays: United States
ID NLM: 7806056

Informations de publication

Date de publication:
23 Aug 2023
Historique:
received: 15 07 2022
accepted: 02 08 2023
medline: 24 8 2023
pubmed: 23 8 2023
entrez: 23 8 2023
Statut: epublish

Résumé

Infertility has massively disrupted social and marital life, resulting in stressful emotional well-being. Early diagnosis is the utmost need for faster adaption to respond to these changes, which makes possible via AI tools. Our main objective is to comprehend the role of AI in fertility detection since we have primarily worked to find biomarkers and related risk factors associated with infertility. This paper aims to vividly analyse the role of AI as an effective method in screening, predicting for infertility and related risk factors. Three scientific repositories: PubMed, Web of Science, and Scopus, are used to gather relevant articles via technical terms: (human infertility OR human fertility) AND risk factors AND (machine learning OR artificial intelligence OR intelligent system). In this way, we systematically reviewed 42 articles and performed a meta-analysis. The significant findings and recommendations are discussed. These include the rising importance of data augmentation, feature extraction, explainability, and the need to revisit the meaning of an effective system for fertility analysis. Additionally, the paper outlines various mitigation actions that can be employed to tackle infertility and its related risk factors. These insights contribute to a better understanding of the role of AI in fertility analysis and the potential for improving reproductive health outcomes.

Identifiants

pubmed: 37610455
doi: 10.1007/s10916-023-01983-8
pii: 10.1007/s10916-023-01983-8
doi:

Types de publication

Systematic Review Meta-Analysis Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

91

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Taylor, A. (2003). ABC of subfertility: extent of the problem. BMJ: British Medical Journal, 327(7412), 434
https://platform.who.int/data/sexual-and-reproductive-health-and-rights/infertility-data . Accessed 13 July 2023.
Menken, J., Trussell, J., & Larsen, U. (1986). Age and infertility. Science, 233(4771), 1389-1394.
pubmed: 3755843 doi: 10.1126/science.3755843
Sharpe, R. M., & Franks, S. (2002). Environment, lifestyle and infertility—an inter-generational issue. Nature Medicine, 8(10), S33-S40.
doi: 10.1038/nm-fertilityS33
Hollmann, M., Runnebaum, B., & Gerhard, I. (1996). Infertility: effects of weight loss on the hormonal profile in obese, infertile women. Human reproduction, 11(9), 1884-1891.
pubmed: 8921059 doi: 10.1093/oxfordjournals.humrep.a019512
Bala, R., Singh, V., Rajender, S., & Singh, K. (2021). Environment, lifestyle, and female infertility. Reproductive sciences, 28(3), 617-638.
pubmed: 32748224 doi: 10.1007/s43032-020-00279-3
Unuane, D., Tournaye, H., Velkeniers, B., & Poppe, K. (2011). Endocrine disorders & female infertility. Best Practice & Research Clinical Endocrinology & Metabolism, 25(6), 861-873.
doi: 10.1016/j.beem.2011.08.001
Denning, C. R., Sommers, S. C., & Quigley Jr, H. J. (1968). Infertility in male patients with cystic fibrosis. Pediatrics, 41(1), 7-17.
pubmed: 5635490 doi: 10.1542/peds.41.1.7
Siristatidis, C., Vogiatzi, P., Pouliakis, A., Trivella, M., Papantoniou, N., & Bettocchi, S. (2016). Predicting IVF outcome: a proposed web-based system using artificial intelligence. in vivo, 30(4), 507–512.
Chiware, T. M., Vermeulen, N., Blondeel, K., Farquharson, R., Kiarie, J., Lundin, K., ... & Toskin, I. (2021). IVF and other ART in low-and middle-income countries: a systematic landscape analysis. Human Reproduction Update, 27(2), 213-228.
pubmed: 33238297 doi: 10.1093/humupd/dmaa047
Islam, M., & Rahaman, A. (2020). Development of smart healthcare monitoring system in IoT environment. SN computer science, 1(3), 1-11.
doi: 10.1007/s42979-020-00195-y
Rahaman, A., Islam, M. M., Islam, M. R., Sadi, M. S., & Nooruddin, S. (2019). Developing IoT Based Smart Health Monitoring Systems: A Review. Rev. d'Intelligence Artif., 33(6), 435-440.
doi: 10.18280/ria.330605
Botezatu, A., Vladoiu, S., Fudulu, A., Albulescu, A., Plesa, A., Muresan, A., ... & Dinu-Draganescu, D. (2022). Advanced molecular approaches in male infertility diagnosis. Biology of Reproduction.
Chen, Z., Wang, Z., Du, M., & Liu, Z. (2022). Artificial Intelligence in the Assessment of Female Reproductive Function Using Ultrasound: A Review. Journal of Ultrasound in Medicine, 41(6), 1343-1353.
pubmed: 34524706 doi: 10.1002/jum.15827
Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., ... & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction, 158(4), R139-R154.
pubmed: 30970326 pmcid: 6733338 doi: 10.1530/REP-18-0523
Raimundo, J. M., & Cabrita, P. (2021). Artificial intelligence at assisted reproductive technology. Procedia Computer Science, 181, 442-447.
doi: 10.1016/j.procs.2021.01.189
Dalal, R. J., Gupta, S., & Mishra, A. P. (2020). Artificial intelligence in assisted reproductive technology: Present and future. International Journal of Infertility & Fetal Medicine, 11(3), 61-64.
doi: 10.5005/jp-journals-10016-1208
Naser, M., Mohamed, M. N., & Shehata, L. H. (2021). Artificial Intelligence In Assisted Reproductive Technology.
Ranjini, K., Suruliandi, A., & Raja, S. P. (2020). Machine learning techniques for assisted reproductive technology: A review. Journal of Circuits, Systems and Computers, 29(11), 2030010.
doi: 10.1142/S021812662030010X
Fernandez, E. I., Ferreira, A. S., Cecílio, M. H. M., Chéles, D. S., de Souza, R. C. M., Nogueira, M. F. G., & Rocha, J. C. (2020). Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. Journal of Assisted Reproduction and Genetics, 37(10), 2359-2376.
pubmed: 32654105 pmcid: 7550511 doi: 10.1007/s10815-020-01881-9
Larsen, U. (2005). Research on infertility: which definition should we use. Fertility and sterility, 83(4), 846-852.
pubmed: 15820788 doi: 10.1016/j.fertnstert.2004.11.033
Abebe, M. S., Afework, M., & Abaynew, Y. (2020). Primary and secondary infertility in Africa: systematic review with meta-analysis. Fertility Research and Practice, 6(1), 1-11.
doi: 10.1186/s40738-020-00090-3
Fernandes, J. R., & Banerjee, A. (2017). Obesity, Spermatogenesis, and Male Infertility. In Male Infertility: Understanding, Causes and Treatment (pp. 167–182). Springer, Singapore.
Palmer, N. O., Bakos, H. W., Fullston, T., & Lane, M. (2012). Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis, 2(4), 253-263.
pubmed: 23248766 pmcid: 3521747 doi: 10.4161/spmg.21362
Lue, T. F. (2000). Erectile dysfunction. New England journal of medicine, 342(24), 1802-1813.
pubmed: 10853004 doi: 10.1056/NEJM200006153422407
Kubin, M., Wagner, G., & Fugl-Meyer, A. R. (2003). Epidemiology of erectile dysfunction. International Journal of Impotence Research, 15(1), 63-71.
pubmed: 12605242 doi: 10.1038/sj.ijir.3900949
Kumar, N., & Singh, A. K. (2015). Trends of male factor infertility, an important cause of infertility: A review of literature. Journal of human reproductive sciences, 8(4), 191–196.
pubmed: 26752853 pmcid: 4691969 doi: 10.4103/0974-1208.170370
Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. R. (2015). A unique view on male infertility around the globe. Reproductive biology and endocrinology: RB&E, 13, 37.
doi: 10.1186/s12958-015-0032-1
Ter Keurst, A., Boivin, J., & Gameiro, S. (2016). Women's intentions to use fertility preservation to prevent age-related fertility decline. Reproductive biomedicine online, 32(1), 121-131.
pubmed: 26611498 doi: 10.1016/j.rbmo.2015.10.007
Melo, A. S., Ferriani, R. A., & Navarro, P. A. (2015). Treatment of infertility in women with polycystic ovary syndrome: approach to clinical practice. Clinics, 70(11), 765-769.
pubmed: 26602525 pmcid: 4642490 doi: 10.6061/clinics/2015(11)09
Wheeler, J. M. (1989). Epidemiology of endometriosis-associated infertility. The Journal of reproductive medicine, 34(1), 41-46
pubmed: 2704007
Balen, A. H., & Rutherford, A. J. (2007). Managing anovulatory infertility and polycystic ovary syndrome. BMJ (Clinical research ed.), 335(7621), 663–666.
pubmed: 17901517 doi: 10.1136/bmj.39335.462303.80
Vigil, P., Lyon, C., Flores, B., Rioseco, H., & Serrano, F. (2017). Ovulation, a sign of health. The Linacre quarterly, 84(4), 343–355.
pubmed: 29255329 pmcid: 5730019 doi: 10.1080/00243639.2017.1394053
Moridi, A., Roozbeh, N., Yaghoobi, H., Soltani, S., Dashti, S., Shahrahmani, N., & Banaei, M. (2019). Etiology and risk factors associated with infertility. Int J Women’s Heal Reprod Sci, 7(3), 346-53.
doi: 10.15296/ijwhr.2019.57
Kahn, B. E., & Brannigan, R. E. (2017). Obesity and male infertility. Current Opinion in Urology, 27(5), 441-445.
pubmed: 28661897 doi: 10.1097/MOU.0000000000000417
Sharma, R., Biedenharn, K. R., Fedor, J. M., & Agarwal, A. (2013). Lifestyle factors and reproductive health: taking control of your fertility. Reproductive biology and endocrinology, 11(1), 1-15.
doi: 10.1186/1477-7827-11-66
Henry-Suchet, J., & Loffredo, V. (1980). Chlamydiae and myco-plasma genital infection in salpingitis and tubal sterility. Chlamydiae and myco-plasma genital infection in salpingitis and tubal sterility., 1.
Burns, L. H., & Covington, S. N. (2006). Psychology of infertility. Infertility counseling: A comprehensive handbook for clinicians, 1–19.
Leke, R. J., Oduma, J. A., Bassol-Mayagoitia, S., Bacha, A. M., & Grigor, K. M. (1993). Regional and geographical variations in infertility: effects of environmental, cultural, and socioeconomic factors. Environmental health perspectives, 101(suppl 2), 73-80.
pubmed: 8243409 pmcid: 1519926 doi: 10.1289/ehp.93101s273
McQueen, D. B., Zhang, J., & Robins, J. C. (2019). Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertility and sterility, 112(1), 54-60.
pubmed: 31056315 doi: 10.1016/j.fertnstert.2019.03.003
Evenson, D. P., & Wixon, R. (2006). Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology, 65(5), 979-991.
pubmed: 16242181 doi: 10.1016/j.theriogenology.2005.09.011
Simon, L., Emery, B., & Carrell, D. T. (2019). Sperm DNA fragmentation: consequences for reproduction. In Genetic Damage in Human Spermatozoa (pp. 87–105). Springer, Cham.
Ribas-Maynou, J., & Benet, J. (2019). Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes, 10(2), 105.
pubmed: 30708937 pmcid: 6410262 doi: 10.3390/genes10020105
Yang, H., Li, G., Jin, H., Guo, Y., & Sun, Y. (2019). The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Translational andrology and urology, 8(4), 356–365.
pubmed: 31555559 pmcid: 6732090 doi: 10.21037/tau.2019.06.22
Bieniek, J. M., Drabovich, A. P., & Lo, K. C. (2016). Seminal biomarkers for the evaluation of male infertility. Asian journal of andrology, 18(3), 426.
pubmed: 26975492 pmcid: 4854096 doi: 10.4103/1008-682X.175781
Chia, S. E., Tay, S. K., & Lim, S. T. (1998). What constitutes a normal seminal analysis? Semen parameters of 243 fertile men. Human reproduction (Oxford, England), 13(12), 3394-3398.
pubmed: 9886521 doi: 10.1093/humrep/13.12.3394
Lotti, F., & Maggi, M. (2018). Sexual dysfunction and male infertility. Nature Reviews Urology, 15(5), 287-307.
pubmed: 29532805 doi: 10.1038/nrurol.2018.20
Mohseni, M. G., Hosseini, S. R., Alizadeh, F., & Rangzan, N. (2014). Serum testosterone and gonadotropins levels in patients with premature ejaculation: A comparison with normal men. Advanced biomedical research, 3, 6.
pubmed: 24592360 pmcid: 3928961 doi: 10.4103/2277-9175.124633
Iammarrone, E., Balet, R., Lower, A. M., Gillott, C., & Grudzinskas, J. G. (2003). Male infertility. Best practice & research Clinical obstetrics & gynaecology, 17(2), 211-229.
doi: 10.1016/S1521-6934(02)00147-5
Balen, A. H., Morley, L. C., Misso, M., Franks, S., Legro, R. S., Wijeyaratne, C. N., Stener-Victorin, E., Fauser, B. C., Norman, R. J., & Teede, H. (2016). The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Human reproduction update, 22(6), 687–708.
pubmed: 27511809 doi: 10.1093/humupd/dmw025
Roe, A. H., & Dokras, A. (2011). The diagnosis of polycystic ovary syndrome in adolescents. Reviews in obstetrics & gynecology, 4(2), 45–51.
Al Chami, A., & Saridogan, E. (2017). Endometrial Polyps and Subfertility. Journal of obstetrics and gynaecology of India, 67(1), 9–14.
pubmed: 28242961 doi: 10.1007/s13224-016-0929-4
Purohit, P., & Vigneswaran, K. (2016). Fibroids and Infertility. Current obstetrics and gynecology reports, 5, 81–88.
pubmed: 27217980 pmcid: 4859843 doi: 10.1007/s13669-016-0162-2
Guo, X. C., & Segars, J. H. (2012). The impact and management of fibroids for fertility: an evidence-based approach. Obstetrics and Gynecology Clinics, 39(4), 521-533.
pubmed: 23182558
Bulletti, C., Coccia, M. E., Battistoni, S., & Borini, A. (2010). Endometriosis and infertility. Journal of assisted reproduction and genetics, 27(8), 441–447.
pubmed: 20574791 pmcid: 2941592 doi: 10.1007/s10815-010-9436-1
Ades, A. E., Price, M. J., Kounali, D., Akande, V. A., Wills, G. S., McClure, M. O., ... & Horner, P. J. (2017). Proportion of tubal factor infertility due to Chlamydia: finite mixture modeling of serum antibody titers. American journal of epidemiology, 185(2), 124-134.
pubmed: 28062393 doi: 10.1093/aje/kww117
Drollette, C. M., & Badawy, S. Z. (1992). Pathophysiology of pelvic adhesions. Modern trends in preventing infertility. The Journal of reproductive medicine, 37(2), 107-21.
pubmed: 1371547
Pellati, D., Mylonakis, I., Bertoloni, G., Fiore, C., Andrisani, A., Ambrosini, G., & Armanini, D. (2008). Genital tract infections and infertility. European Journal of Obstetrics & Gynecology and Reproductive Biology, 140(1), 3-11.
doi: 10.1016/j.ejogrb.2008.03.009
Sellors, J. W., Mahony, J. B., Chernesky, M. A., & Rath, D. J. (1988). Tubal factor infertility: an association with prior chlamydial infection and asymptomatic salpingitis. Fertility and sterility, 49(3), 451-457.
pubmed: 3342898 doi: 10.1016/S0015-0282(16)59772-6
Westrom, L. V. (1996). Chlamydia and its effect on reproduction. Journal of the British Fertility Society, 1(1), 23-30.
pubmed: 12346973
Stoop, D., Cobo, A., & Silber, S. (2014). Fertility preservation for age-related fertility decline. The Lancet, 384(9950), 1311-1319.
doi: 10.1016/S0140-6736(14)61261-7
Garcia, D., Brazal, S., Rodriguez, A., Prat, A., & Vassena, R. (2018). Knowledge of age-related fertility decline in women: a systematic review. European Journal of Obstetrics & Gynecology and Reproductive Biology, 230, 109-118.
doi: 10.1016/j.ejogrb.2018.09.030
Speroff, L. (1994). The effect of aging on fertility. Current opinion in obstetrics & gynecology, 6(2), 115-120.
doi: 10.1097/00001703-199404000-00002
Hammoud, A. O., Meikle, A. W., Reis, L. O., Gibson, M., Peterson, C. M., & Carrell, D. T. (2012, December). Obesity and male infertility: a practical approach. In Seminars in reproductive medicine (Vol. 30, No. 06, pp. 486–495). Thieme Medical Publishers.
Trovato G. M. (2012). Behavior, nutrition and lifestyle in a comprehensive health and disease paradigm: skills and knowledge for a predictive, preventive and personalized medicine. The EPMA journal, 3(1), 8.
pubmed: 22738244 pmcid: 3384462 doi: 10.1007/s13167-012-0141-2
Kelly-Weeder, S., & Cox, C. L. (2007). The impact of lifestyle risk factors on female infertility. Women & Health, 44(4), 1-23.
doi: 10.1300/J013v44n04_01
Hruska, K. S., Furth, P. A., Seifer, D. B., Sharara, F. I., & Flaws, J. A. (2000). Environmental factors in infertility. Clinical obstetrics and gynecology, 43(4), 821–829.
pubmed: 11100299 doi: 10.1097/00003081-200012000-00014
Edward V. Younglai, Alison C. Holloway, Warren G. Foster. (2005). Environmental and occupational factors affecting fertility and IVF success, Human Reproduction Update, 11 (1), 43–57.
pubmed: 15601728 doi: 10.1093/humupd/dmh055
Alejandro Oliva, Alfred Spira, Luc Multigner. (2001) Contribution of environmental factors to the risk of male infertility, Human Reproduction, 16 (8), 1768–1776.
pubmed: 11473980 doi: 10.1093/humrep/16.8.1768
Tao, P., Coates, R., & Maycock, B. (2011). The impact of infertility on sexuality: A literature review. The Australasian medical journal, 4(11), 620–627.
pubmed: 23386877 pmcid: 3562919 doi: 10.4066/AMJ.2011.105
Soltanzadeh, S., Zarandi, M. H. F., & Astanjin, M. B. (2016). A hybrid fuzzy clustering approach for fertile and unfertile analysis. In 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) (pp. 1–6). IEEE.
Sahoo, A. J., & Kumar, Y. (2014). Seminal quality prediction using data mining methods. Technology and Health Care, 22(4), 531-545.
pubmed: 24898862 doi: 10.3233/THC-140816
Simfukwe, M., Kunda, D., & Chembe, C. (2015). Comparing naive bayes method and artificial neural network for semen quality categorization. International Journal of Innovative Science, Engineering & Technology, 2(7), 689-694.
Girela, J. L., Gil, D., Johnsson, M., Gomez-Torres, M. J., & De Juan, J. (2013). Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. Biology of reproduction, 88(4), 99-1.
pubmed: 23446456 doi: 10.1095/biolreprod.112.104653
Bidgoli, A. A., Komleh, H. E., & Mousavirad, S. J. (2015, November). Seminal quality prediction using optimized artificial neural network with genetic algorithm. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 695–699). IEEE.
Ahmed, M. T., & Imtiaz, M. N. Prediction of Seminal Quality Based on Naïve Bayes Approach, 4(2), 2020. PUST.
Engy, E. L., Ali, E. L., & Sally, E. G. (2018). An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality. Stud Informatics Control, 27(3), 349-358.
doi: 10.24846/v27i3y201810
Mendoza-Palechor, F. E., Ariza-Colpas, P. P., Sepulveda-Ojeda, J. A., De-la-Hoz-Manotas, A., & Piñeres Melo, M. (2016). Fertility analysis method based on supervised and unsupervised data mining techniques.
Candemir, C. (2018). Estimating the semen quality from life style using fuzzy radial basis functions. Int J Mach Learn Comput, 8(1), 44-8.
doi: 10.18178/ijmlc.2018.8.1.661
Gil, D., Girela, J. L., De Juan, J., Gomez-Torres, M. J., & Johnsson, M. (2012). Predicting seminal quality with artificial intelligence methods. Expert Systems with Applications, 39(16), 12564-12573.
doi: 10.1016/j.eswa.2012.05.028
Yibre, A. M., & Koçer, B. (2021). Semen quality predictive model using Feed Forwarded Neural Network trained by Learning-Based Artificial Algae Algorithm. Engineering Science and Technology, an International Journal, 24(2), 310-318.
doi: 10.1016/j.jestch.2020.09.001
Ma, J., Afolabi, D. O., Ren, J., & Zhen, A. (2019). Predicting seminal quality via imbalanced learning with evolutionary safe-level synthetic minority over-sampling technique. Cognitive Computation, 1–12.
Dash, S. R., & Ray, R. (2020). Predicting seminal quality and its dependence on life style factors through ensemble learning. International Journal of E-Health and Medical Communications (IJEHMC), 11(2), 78-95.
Rhemimet, A., Raghay, S., & Bencharef, O. (2016). Comparative Analysis of Classification, Clustering and Regression Techniques to Explore Men’s Fertility. In Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015 (pp. 455–462). Springer, Cham.
Roy, D. G., & Alvi, P. A. (2022). Detection of Male Fertility Using AI-Driven Tools. In International Conference on Recent Trends in Image Processing and Pattern Recognition (pp. 14–25). Springer, Cham.
Riordon, J., McCallum, C., & Sinton, D. (2019). Deep learning for the classification of human sperm. Computers in biology and medicine, 111, 103342.
pubmed: 31279166 doi: 10.1016/j.compbiomed.2019.103342
Iqbal, I., Mustafa, G., & Ma, J. (2020). Deep learning-based morphological classification of human sperm heads. Diagnostics, 10(5), 325.
pubmed: 32443809 pmcid: 7277990 doi: 10.3390/diagnostics10050325
Tsai, V. F., Zhuang, B., Pong, Y. H., Hsieh, J. T., & Chang, H. C. (2020). Web-and Artificial Intelligence–Based Image Recognition for Sperm Motility Analysis: Verification Study. JMIR medical informatics, 8(11), e20031.
pubmed: 33211025 pmcid: 7714652 doi: 10.2196/20031
Lesani, A., Kazemnejad, S., Zand, M. M., Azadi, M., Jafari, H., Mofrad, M. R., & Nosrati, R. (2020). Quantification of human sperm concentration using machine learning-based spectrophotometry. Computers in Biology and Medicine, 127, 104061.
pubmed: 33126127 doi: 10.1016/j.compbiomed.2020.104061
Hicks, S. A., Andersen, J. M., Witczak, O., Thambawita, V., Halvorsen, P., Hammer, H. L., ... & Riegler, M. A. (2019). Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Scientific reports, 9(1), 1-10.
doi: 10.1038/s41598-019-53217-y
Agarwal, A., Henkel, R., Huang, C. C., & Lee, M. S. (2019). Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia, 51(11), e13440.
pubmed: 31583732 doi: 10.1111/and.13440
Ghasemian, F., Mirroshandel, S. A., Monji-Azad, S., Azarnia, M., & Zahiri, Z. (2015). An efficient method for automatic morphological abnormality detection from human sperm images. Computer methods and programs in biomedicine, 122(3), 409-420.
pubmed: 26345335 doi: 10.1016/j.cmpb.2015.08.013
Hicks, S., Halvorsen, P., Haugen, T. B., Andersen, J. M., Witczak, O., Hammer, H. L., ... & Riegler, M. (2019). Predicting Sperm Motility and Morphology using Deep Learning and Handcrafted Features.
Somasundaram, D., & Nirmala, M. (2021). Faster region convolutional neural network and semen tracking algorithm for sperm analysis. Computer Methods and Programs in Biomedicine, 200, 105918.
pubmed: 33465511 doi: 10.1016/j.cmpb.2020.105918
Ademola, b. J., adebayo, i. P., & thomas, b. O. A predictive model for the risk of infertility in women using supervised machine learning algorithms (a comparative analysis).
Simi, M. S., Nayaki, K. S., Parameswaran, M., & Sivadasan, S. (2017, October). Exploring female infertility using predictive analytic. In 2017 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1–6). IEEE.
Aror, A., & Chouksey, P. (2017). A novel approach for women's infertility detection using data mining techniques. Int J Electron Commun Comput Eng, 8, 129-33
Asmy Denny, Anita Raj, Ashi Ashok, C. Maneesh Ram, Remya George, “i-HOPE: Detection and Prediction System for Polycystic Ovary Syndrome (PCOS) Using Machine Learning Techniques,” TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp.673–78, 2019.
B. Vikas, Anuhya, BS, Chilla, Manaswini, Sarangi, Sipra, “A Critical Study of Polycystic Ovarian Syndrome (PCOS) Classification Techniques”, International Journal of Computational Enginering & Management, vol. 21, 2018.
Zhang, Xing-Zhong, Pang, Yan-Li, Wang, Xian Li, Yan-Hui, “Computational characterization and identification of human polycystic ovary syndrome genes”, Scientific reports, vol.8, no.1, pp.1-7, 2018
Dewi, RM, Wisesty, UN, “Classification of polycystic ovary based on ultrasound images using competitive neural network,” Journal of Physics Conference Series, vol.971, no.1, pp.0120105, 2018.
Cheng J, Jojo, Mahalingaiah, and Shruthi, “Data mining and classification of polycystic ovaries in pelvic ultrasound reports,” bioRxiv, pp. 254870, 2018.
K. Meena, Dr. M. Manimekalai, S. Rethinavalli, “Correlation of Artificial Neural Network Classification and NFRS Attribute Filtering Algorithm for PCOS Data”, Int. J. Res. Eng. Technol, vol.5, no.3, pp. 519–24, 2015.
Joham, A.E., Teede, H.J., Ranasinha, S., Zoungas, S. and Boyle, J., “Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study,” Journal of women's health, vol. 24, no. 4, pp. 299-307, 2015.
pubmed: 25654626 doi: 10.1089/jwh.2014.5000
Thomas, N. A review on prognosis of pcos using nfrs, hybrid technique and chi-square test. In Proceedings of National Conference on Advanced Computing and Communication Technology ISBN (Vol. 97893, pp. 52886–869).
Mehrotra, P., Chatterjee, J., Chakraborty, C., Ghoshdastidar, B., & Ghoshdastidar, S. (2011). Automated screening of polycystic ovary syndrome using machine learning techniques, 2011 Annual IEEE India Conference, pp.1–5.
Meena, D. K., Manimekalai, D. M., & Rethinavalli, S. (2015). A novel framework for filtering the PCOS attributes using data mining techniques. International Journal of Engineering Research & Technology, 4(1), 702-706.
Meena, D. K., Manimekalai, D. M., & Rethinavalli, S. (2015). Implementing neural fuzzy rough set and artificial neural network for predicting PCOS. International Journal on Recent and Innovation Trends in Computing and Communication, 3(12), 6722-6727.
Roy, D. G., & Alvi, P. A. (2022). Artificial Intelligence in Diagnosis of Polycystic Ovarian Syndrome. In Contemporary Issues in Communication, Cloud and Big Data Analytics (pp. 453–463). Springer, Singapore.
Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79.
doi: 10.1016/j.neucom.2017.11.077
Piles, M., Bergsma, R., Gianola, D., Gilbert, H., & Tusell, L. (2021). Feature selection stability and accuracy of prediction models for genomic prediction of residual feed intake in pigs using machine learning. Frontiers in genetics, 12, 611506.
pubmed: 33692825 pmcid: 7938892 doi: 10.3389/fgene.2021.611506
Karabulut, E. M., Özel, S. A., & Ibrikci, T. (2012). A comparative study on the effect of feature selection on classification accuracy. Procedia Technology, 1, 323-327.
doi: 10.1016/j.protcy.2012.02.068
Chu, C., Hsu, A. L., Chou, K. H., Bandettini, P., Lin, C., & Alzheimer's Disease Neuroimaging Initiative. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage, 60(1), 59-70.
pubmed: 22166797 doi: 10.1016/j.neuroimage.2011.11.066
Güvenir, H. A., Misirli, G., Dilbaz, S., Ozdegirmenci, O., Demir, B., & Dilbaz, B. (2015). Estimating the chance of success in IVF treatment using a ranking algorithm. Medical & biological engineering & computing, 53(9), 911-920.
doi: 10.1007/s11517-015-1299-2
Hassan, M. R., Al-Insaif, S., Hossain, M. I., & Kamruzzaman, J. (2020). A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural computing and applications, 32(7), 2283-2297.
doi: 10.1007/s00521-018-3693-9
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., ... & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of clinical epidemiology, 62(10), e1-e34.
Valiuškaitė V, Raudonis V, Maskeliūnas R, Damaševičius R, Krilavičius T. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors (Basel). 2020 Dec 24;21(1):72. doi: https://doi.org/10.3390/s21010072 . PMID: 33374461; PMCID: PMC7795243.
doi: 10.3390/s21010072 pubmed: 33374461 pmcid: 7795243
GhoshRoy, D., Alvi, P. A., & Santosh, K. C. (2022). Explainable AI to Predict Male Fertility Using Extreme Gradient Boosting Algorithm with SMOTE. Electronics, 12(1), 15.
doi: 10.3390/electronics12010015
GhoshRoy, D., Alvi, P. A., & Santosh, K. C. (2023, April). Unboxing Industry-Standard AI Models for Male Fertility Prediction with SHAP. In Healthcare (Vol. 11, No. 7). Multidisciplinary Digital Publishing Institute (MDPI).

Auteurs

Debasmita GhoshRoy (D)

School of Automation, Banasthali Vidyapith, 304022, Rajasthan, India.
Applied AI Research Lab, Vermillion, SD, 57069, USA.

P A Alvi (PA)

Department of Physics, Banasthali Vidyapith, 304022, Rajasthan, India.

K C Santosh (KC)

Department of Computer Science, University of South Dakota, Vermillion, SD, 57069, USA. santosh.kc@usd.edu.
Applied AI Research Lab, Vermillion, SD, 57069, USA. santosh.kc@usd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH