Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
08 2023
Historique:
received: 26 02 2023
accepted: 13 06 2023
revised: 01 06 2023
medline: 4 9 2023
pubmed: 24 8 2023
entrez: 23 8 2023
Statut: ppublish

Résumé

Pyroptosis, apoptosis, necroptosis, and ferroptosis, which are the most well-studied regulated cell death (RCD) pathways, contribute to the clearance of infected or potentially neoplastic cells, highlighting their importance in homeostasis, host defense against pathogens, cancer, and a wide range of other pathologies. Although these four RCD pathways employ distinct molecular and cellular processes, emerging genetic and biochemical studies have suggested remarkable flexibility and crosstalk among them. The crosstalk among pyroptosis, apoptosis and necroptosis pathways is more evident in cellular responses to infection, which has led to the conceptualization of PANoptosis. In this review, we provide a brief overview of the molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis and their importance in maintaining homeostasis. We discuss the intricate crosstalk among these RCD pathways and the current evidence supporting PANoptosis, focusing on infectious diseases and cancer. Understanding the fundamental processes of various cell death pathways is crucial to inform the development of new therapeutics against many diseases, including infection, sterile inflammation, and cancer.

Identifiants

pubmed: 37612410
doi: 10.1038/s12276-023-01069-y
pii: 10.1038/s12276-023-01069-y
pmc: PMC10474065
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1632-1643

Informations de copyright

© 2023. The Author(s).

Références

Wang, Y. & Kanneganti, T. D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct. Biotechnol. J. 19, 4641–4657 (2021).
pubmed: 34504660 pmcid: 8405902 doi: 10.1016/j.csbj.2021.07.038
Green, D. R. The Coming Decade of Cell Death Research: Five Riddles. Cell 177, 1094–1107 (2019).
pubmed: 31100266 pmcid: 6534278 doi: 10.1016/j.cell.2019.04.024
Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).
pubmed: 32873928 doi: 10.1038/s41580-020-0270-8
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).
pubmed: 30948788 pmcid: 6796845 doi: 10.1038/s41422-019-0164-5
Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).
pubmed: 35298263 pmcid: 9273333 doi: 10.1126/science.abf0529
Twiddy, D., Cohen, G. M., Macfarlane, M. & Cain, K. Caspase-7 is directly activated by the approximately 700-kDa apoptosome complex and is released as a stable XIAP-caspase-7 approximately 200-kDa complex. J. Biol. Chem. 281, 3876–3888 (2006).
pubmed: 16352606 doi: 10.1074/jbc.M507393200
Stennicke, H. R. et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084–27090 (1998).
pubmed: 9765224 doi: 10.1074/jbc.273.42.27084
Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).
pubmed: 7596430 doi: 10.1038/376037a0
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).
pubmed: 26375003 doi: 10.1038/nature15514
Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).
pubmed: 26375259 doi: 10.1038/nature15541
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).
pubmed: 22265413 doi: 10.1016/j.cell.2011.11.031
Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).
pubmed: 24703947 doi: 10.1016/j.molcel.2014.03.003
Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
pubmed: 35803244 pmcid: 9273022 doi: 10.1016/j.cell.2022.06.003
Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).
pubmed: 33472215 doi: 10.1038/s41586-021-03218-7
Ke, F. F. S. et al. Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell 173, 1217–1230.e1217 (2018).
pubmed: 29775594 doi: 10.1016/j.cell.2018.04.036
Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).
pubmed: 9708736 doi: 10.1016/S0092-8674(00)81477-4
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).
pubmed: 9753321 doi: 10.1016/S0092-8674(00)81733-X
Karki, R. et al. Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 184, 149–168.e117 (2021).
pubmed: 33278357 doi: 10.1016/j.cell.2020.11.025
Karki, R. et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci. Immunol. 7, eabo6294 (2022).
pubmed: 35587515 doi: 10.1126/sciimmunol.abo6294
Mall, R. et al. Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology. NAR Cancer 4, zcac033 (2022).
pubmed: 36329783 pmcid: 9623737 doi: 10.1093/narcan/zcac033
Karki, R. et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37, 109858 (2021).
pubmed: 34686350 pmcid: 8853634 doi: 10.1016/j.celrep.2021.109858
Lee, S. et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597, 415–419 (2021).
pubmed: 34471287 pmcid: 8603942 doi: 10.1038/s41586-021-03875-8
Malireddi, R. K. S. et al. Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. Immunohorizons 5, 568–580 (2021).
pubmed: 34290111 doi: 10.4049/immunohorizons.2100059
Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).
pubmed: 4561027 pmcid: 2008650 doi: 10.1038/bjc.1972.33
Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).
pubmed: 30655609 pmcid: 7325303 doi: 10.1038/s41580-018-0089-8
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).
pubmed: 9390557 doi: 10.1016/S0092-8674(00)80434-1
Kim, H. E., Du, F., Fang, M. & Wang, X. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc. Natl. Acad. Sci. USA 102, 17545–17550 (2005).
pubmed: 16251271 pmcid: 1266161 doi: 10.1073/pnas.0507900102
Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).
pubmed: 29362479 pmcid: 5864239 doi: 10.1038/s41418-017-0012-4
Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).
pubmed: 7538907 doi: 10.1016/0092-8674(95)90071-3
Scott, F. L. et al. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019–1022 (2009).
pubmed: 19118384 doi: 10.1038/nature07606
Strasser, A., Harris, A. W., Huang, D. C., Krammer, P. H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).
pubmed: 8557033 pmcid: 394738 doi: 10.1002/j.1460-2075.1995.tb00304.x
Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).
pubmed: 19626005 pmcid: 2956120 doi: 10.1038/nature08229
Mehlen, P. & Tauszig-Delamasure, S. Dependence receptors and colorectal cancer. Gut 63, 1821–1829 (2014).
pubmed: 25163468 doi: 10.1136/gutjnl-2013-306704
Liu, J. et al. Mediation of the DCC apoptotic signal by DIP13 alpha. J. Biol. Chem. 277, 26281–26285 (2002).
pubmed: 12011067 doi: 10.1074/jbc.M204679200
Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol 9, 113–114 (2001).
pubmed: 11303500 doi: 10.1016/S0966-842X(00)01936-3
Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).
pubmed: 25119034 doi: 10.1038/nature13683
Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).
pubmed: 21147462 pmcid: 3016200 doi: 10.1016/j.chom.2010.11.007
Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).
pubmed: 28459430 doi: 10.1038/nature22393
de Vasconcelos, N. M. & Lamkanfi, M. Recent Insights on Inflammasomes, Gasdermin Pores, and Pyroptosis. Cold Spring Harb. Perspect. Biol. 12 https://doi.org/10.1101/cshperspect.a036392 (2020).
Karki, R. & Kanneganti, T. D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer 19, 197–214 (2019).
pubmed: 30842595 pmcid: 6953422 doi: 10.1038/s41568-019-0123-y
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).
pubmed: 11101870 doi: 10.1038/82732
Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).
pubmed: 19498109 doi: 10.1126/science.1172308
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).
pubmed: 18408713 pmcid: 5434866 doi: 10.1038/nchembio.83
Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).
pubmed: 24019532 pmcid: 3829437 doi: 10.1074/jbc.M113.462341
Nailwal, H. & Chan, F. K. Necroptosis in anti-viral inflammation. Cell Death Differ. 26, 4–13 (2019).
pubmed: 30050058 doi: 10.1038/s41418-018-0172-x
Gong, Y. et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer 18, 100 (2019).
pubmed: 31122251 pmcid: 6532150 doi: 10.1186/s12943-019-1029-8
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
pubmed: 22632970 pmcid: 3367386 doi: 10.1016/j.cell.2012.03.042
Bannai, S., Tsukeda, H. & Okumura, H. Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochem Biophys. Res. Commun. 74, 1582–1588 (1977).
pubmed: 843380 doi: 10.1016/0006-291X(77)90623-4
Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).
pubmed: 18762024 doi: 10.1016/j.cmet.2008.07.005
Chen, D. et al. iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat. Commun. 12, 3644 (2021).
pubmed: 34131139 pmcid: 8206155 doi: 10.1038/s41467-021-23902-6
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).
pubmed: 12676586 doi: 10.1016/S1535-6108(03)00050-3
Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).
pubmed: 18355723 pmcid: 2683762 doi: 10.1016/j.chembiol.2008.02.010
Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).
pubmed: 27159577 pmcid: 4920070 doi: 10.1038/nchembio.2079
Lamkanfi, M. et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell Proteom. 7, 2350–2363 (2008).
doi: 10.1074/mcp.M800132-MCP200
Malireddi, R. K., Ippagunta, S., Lamkanfi, M. & Kanneganti, T. D. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J. Immunol. 185, 3127–3130 (2010).
pubmed: 20713892 doi: 10.4049/jimmunol.1001512
Tsuchiya, K. et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 10, 2091 (2019).
pubmed: 31064994 pmcid: 6505044 doi: 10.1038/s41467-019-09753-2
Man, S. M. et al. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J. Immunol. 191, 5239–5246 (2013).
pubmed: 24123685 doi: 10.4049/jimmunol.1301581
Van Opdenbosch, N. et al. Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4. Cell Rep. 21, 3427–3444 (2017).
pubmed: 29262324 pmcid: 5746600 doi: 10.1016/j.celrep.2017.11.088
Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).
pubmed: 22555457 pmcid: 3438500 doi: 10.1038/cdd.2012.51
Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013).
pubmed: 23645208 pmcid: 3741496 doi: 10.1038/cdd.2013.37
Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).
pubmed: 24453255 doi: 10.4049/jimmunol.1302839
Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385–7390 (2014).
pubmed: 24799700 pmcid: 4034241 doi: 10.1073/pnas.1403252111
Malireddi, R. K. S. et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J. Exp. Med. 217 https://doi.org/10.1084/jem.20191644 (2020).
Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).
pubmed: 30361383 pmcid: 6522129 doi: 10.1126/science.aau2818
Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages. Cell Chem. Biol. 24, 507–514.e504 (2017).
pubmed: 28392147 pmcid: 5467448 doi: 10.1016/j.chembiol.2017.03.009
Xu, W. et al. Apaf-1 Pyroptosome Senses Mitochondrial Permeability Transition. Cell Metab. 33, 424–436.e410 (2021).
pubmed: 33308446 doi: 10.1016/j.cmet.2020.11.018
Kang, S. et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 (2015).
pubmed: 26104484 doi: 10.1038/ncomms8515
Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl. Acad. Sci. USA 114, E961–E969 (2017).
pubmed: 28096356 pmcid: 5307433 doi: 10.1073/pnas.1613305114
Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).
pubmed: 21368763 pmcid: 3077893 doi: 10.1038/nature09852
Alvarez-Diaz, S. et al. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 45, 513–526 (2016).
pubmed: 27523270 pmcid: 5040700 doi: 10.1016/j.immuni.2016.07.016
Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).
pubmed: 24813850 pmcid: 4068710 doi: 10.1016/j.cell.2014.04.018
Yuk, H., Abdullah, M., Kim, D. H., Lee, H. & Lee, S. J. Necrostatin-1 Prevents Ferroptosis in a RIPK1- and IDO-Independent Manner in Hepatocellular Carcinoma. Antioxidants (Basel) 10 https://doi.org/10.3390/antiox10091347 (2021).
Christgen, S. et al. Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front Cell Infect. Microbiol 10, 237 (2020).
pubmed: 32547960 pmcid: 7274033 doi: 10.3389/fcimb.2020.00237
Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1 https://doi.org/10.1126/sciimmunol.aag2045 (2016).
Kesavardhana, S. et al. The Zalpha2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J. Biol. Chem. 295, 8325–8330 (2020).
pubmed: 32350114 pmcid: 7294087 doi: 10.1074/jbc.RA120.013752
Basavaraju, S., Mishra, S., Jindal, R. & Kesavardhana, S. Emerging Role of ZBP1 in Z-RNA Sensing, Influenza Virus-Induced Cell Death, and Pulmonary Inflammation. mBio 13, e0040122 (2022).
pubmed: 35587190 doi: 10.1128/mbio.00401-22
Banoth, B. et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J. Biol. Chem. 295, 18276–18283 (2020).
pubmed: 33109609 doi: 10.1074/jbc.RA120.015924
Doerflinger, M. et al. Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity 53, 533–547.e537 (2020).
pubmed: 32735843 pmcid: 7500851 doi: 10.1016/j.immuni.2020.07.004
Sundaram, B., Karki, R. & Kanneganti, T. D. NLRC4 Deficiency Leads to Enhanced Phosphorylation of MLKL and Necroptosis. Immunohorizons 6, 243–252 (2022).
pubmed: 35301258 pmcid: 8996759 doi: 10.4049/immunohorizons.2100118
Karki, R. & Kanneganti, T. D. ADAR1 and ZBP1 in innate immunity, cell death, and disease. Trends Immunol. https://doi.org/10.1016/j.it.2023.01.001 (2023).
Gurung, P., Burton, A. & Kanneganti, T. D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. Proc. Natl Acad. Sci. USA 113, 4452–4457 (2016).
pubmed: 27071119 pmcid: 4843439 doi: 10.1073/pnas.1601636113
Lukens, J. R. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246–249 (2014).
pubmed: 25274309 pmcid: 4268032 doi: 10.1038/nature13788
Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).
pubmed: 31723262 doi: 10.1038/s41586-019-1752-8
Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).
pubmed: 31748744 doi: 10.1038/s41586-019-1770-6
Oberst, A. & Green, D. R. It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat. Rev. Mol. Cell Biol. 12, 757–763 (2011).
pubmed: 22016059 pmcid: 3627210 doi: 10.1038/nrm3214
Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).
pubmed: 15322156 doi: 10.4049/jimmunol.173.5.2976
Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).
pubmed: 12654726 pmcid: 196031 doi: 10.1101/gad.1063703
Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).
pubmed: 21368762 pmcid: 3060292 doi: 10.1038/nature09857
Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014).
pubmed: 25186904 doi: 10.1038/nature13706
Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).
pubmed: 31511692 doi: 10.1038/s41586-019-1548-x
Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).
pubmed: 9708735 doi: 10.1016/S0092-8674(00)81476-2
Momoi, T., Fujita, E. & Urase, K. Strain-specific caspase-3-dependent programmed cell death in the early developing mouse forebrain. Neuroreport 14, 111–115 (2003).
pubmed: 12544841 doi: 10.1097/00001756-200301200-00021
Zhou, X. et al. Rare mutations in apoptosis related genes APAF1, CASP9, and CASP3 contribute to human neural tube defects. Cell Death Dis. 9, 43 (2018).
pubmed: 29352212 pmcid: 5833651 doi: 10.1038/s41419-017-0096-2
Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).
pubmed: 35859177 pmcid: 9339495 doi: 10.1038/s41586-022-04896-7
Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).
pubmed: 35859176 pmcid: 9329096 doi: 10.1038/s41586-022-04878-9
de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).
pubmed: 35859175 doi: 10.1038/s41586-022-04974-w
Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).
pubmed: 27819681 pmcid: 5755685 doi: 10.1038/nature20558
Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).
pubmed: 21057511 pmcid: 3058225 doi: 10.1038/ni.1960
Ryu, J. C. et al. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 10, 757–774 (2017).
pubmed: 27554297 doi: 10.1038/mi.2016.73
Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).
pubmed: 25121751 doi: 10.1016/j.chom.2014.07.001
Karki, R. et al. IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell 173, 920–933.e913 (2018).
pubmed: 29576451 pmcid: 5935577 doi: 10.1016/j.cell.2018.02.055
Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).
pubmed: 27281216 doi: 10.1038/nature18590
Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).
pubmed: 27383986 pmcid: 5539988 doi: 10.1038/nature18629
Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).
pubmed: 24356306 pmcid: 4047036 doi: 10.1038/nature12940
Zhou, Y. et al. Inhibiting PSMalpha-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system. Cell Death Dis. 9, 362 (2018).
pubmed: 29500427 pmcid: 5834619 doi: 10.1038/s41419-018-0398-z
Gonzalez-Juarbe, N. et al. Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia. PLoS Pathog. 11, e1005337 (2015).
pubmed: 26659062 pmcid: 4676650 doi: 10.1371/journal.ppat.1005337
Huang, H. R. et al. RIPK3 Activates MLKL-mediated Necroptosis and Inflammasome Signaling during Streptococcus Infection. Am. J. Respir. Cell Mol. Biol. 64, 579–591 (2021).
pubmed: 33625952 pmcid: 8086037 doi: 10.1165/rcmb.2020-0312OC
Pearson, J. S. et al. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol 2, 16258 (2017).
pubmed: 28085133 pmcid: 7613272 doi: 10.1038/nmicrobiol.2016.258
Li, S. et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501, 242–246 (2013).
pubmed: 23955153 doi: 10.1038/nature12436
Pearson, J. S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013).
pubmed: 24025841 pmcid: 3836246 doi: 10.1038/nature12524
Rosenberg, A. & Sibley, L. D. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 29, 1186–1198.e1188 (2021).
pubmed: 34043960 pmcid: 8711274 doi: 10.1016/j.chom.2021.04.016
Yamane, D. et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem. Biol. 29, 799–810.e794 (2022).
pubmed: 34520742 doi: 10.1016/j.chembiol.2021.07.022
Bednash, J. S. et al. Syrian hamsters as a model of lung injury with SARS-CoV-2 infection: Pathologic, physiologic, and detailed molecular profiling. Transl. Res 240, 1–16 (2022).
pubmed: 34740873 doi: 10.1016/j.trsl.2021.10.007
Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med 216, 556–570 (2019).
pubmed: 30787033 pmcid: 6400546 doi: 10.1084/jem.20181776
Dar, H. H. et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J. Clin. Invest 128, 4639–4653 (2018).
pubmed: 30198910 pmcid: 6159971 doi: 10.1172/JCI99490
Karki, R. & Kanneganti, T. D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J. Transl. Med 20, 542 (2022).
pubmed: 36419185 pmcid: 9682745 doi: 10.1186/s12967-022-03767-z
Karki, R. & Kanneganti, T. D. The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. Trends Immunol. 42, 681–705 (2021).
pubmed: 34217595 pmcid: 9310545 doi: 10.1016/j.it.2021.06.001
Thapa, R. J. et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe 20, 674–681 (2016).
pubmed: 27746097 pmcid: 5687825 doi: 10.1016/j.chom.2016.09.014
Simpson, D. S. et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 55, 423–441.e429 (2022).
pubmed: 35139355 pmcid: 8822620 doi: 10.1016/j.immuni.2022.01.003
Liu, X. et al. The role of necroptosis in disease and treatment. MedComm (2020) 2, 730–755 (2021).
pubmed: 34977874
Tan, G., Huang, C., Chen, J. & Zhi, F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J. Hematol. Oncol. 13, 149 (2020).
pubmed: 33160389 pmcid: 7648939 doi: 10.1186/s13045-020-00985-0
De Schutter, E. et al. GSDME and its role in cancer: From behind the scenes to the front of the stage. Int J. Cancer 148, 2872–2883 (2021).
pubmed: 33186472 doi: 10.1002/ijc.33390
Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).
pubmed: 27049944 pmcid: 4833566 doi: 10.1038/nature17403
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Muendlein, H. I. et al. ZBP1 promotes inflammatory responses downstream of TLR3/TLR4 via timely delivery of RIPK1 to TRIF. Proc. Natl Acad. Sci. USA 119, e2113872119 (2022).
pubmed: 35666872 pmcid: 9214535 doi: 10.1073/pnas.2113872119
Karki, R. et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight 5 https://doi.org/10.1172/jci.insight.136720 (2020).
Kanneganti, A. et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean fever. J. Exp. Med. 215, 1519–1529 (2018).
pubmed: 29793924 pmcid: 5987922 doi: 10.1084/jem.20172060
Xu, B. et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773–782 (2018).
pubmed: 29273476 doi: 10.1016/j.jhep.2017.11.040
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).
pubmed: 11687797 pmcid: 4322000 doi: 10.1038/ng756
Xiao, J. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol. 16, e3000047 (2018).
pubmed: 30388107 pmcid: 6235378 doi: 10.1371/journal.pbio.3000047
Lu, Z. et al. Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med 204, 667–681 (2021).
pubmed: 34133911 doi: 10.1164/rccm.202009-3442OC
Takemoto, K. et al. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio 4, 777–787 (2014).
pubmed: 25349782 pmcid: 4208088 doi: 10.1016/j.fob.2014.08.007
Ramachandran, A. et al. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58, 2099–2108 (2013).
pubmed: 23744808 doi: 10.1002/hep.26547
Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).
pubmed: 34385713 pmcid: 8609402 doi: 10.1038/s41590-021-00993-3
Nagasaki, T. et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J. Clin. Invest. 132 https://doi.org/10.1172/JCI151685 (2022).
Wang, R. et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580, 386–390 (2020).
pubmed: 32296174 doi: 10.1038/s41586-020-2127-x

Auteurs

Ein Lee (E)

Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, South Korea.

Chang-Hyun Song (CH)

Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea.

Sung-Jin Bae (SJ)

Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan, 49267, South Korea.

Ki-Tae Ha (KT)

Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea.

Rajendra Karki (R)

Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea. rkarki@snu.ac.kr.
Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal. rkarki@snu.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH