The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease.


Journal

Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782

Informations de publication

Date de publication:
Dec 2023
Historique:
accepted: 06 07 2023
medline: 22 11 2023
pubmed: 24 8 2023
entrez: 23 8 2023
Statut: ppublish

Résumé

The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.

Identifiants

pubmed: 37612414
doi: 10.1038/s41580-023-00641-8
pii: 10.1038/s41580-023-00641-8
doi:

Substances chimiques

Mechanistic Target of Rapamycin Complex 1 EC 2.7.11.1
Multiprotein Complexes 0
TOR Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

857-875

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. Springer Nature Limited.

Références

Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).
pubmed: 1715094 doi: 10.1126/science.1715094
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).
pubmed: 7518356 doi: 10.1016/0092-8674(94)90570-3
Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).
pubmed: 8008069 doi: 10.1038/369756a0
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).
pubmed: 15268862 doi: 10.1016/j.cub.2004.06.054
Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).
pubmed: 12408816 doi: 10.1016/S1097-2765(02)00636-6
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
pubmed: 31937935 pmcid: 7102936 doi: 10.1038/s41580-019-0199-y
Shin, H. R. & Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226–238 (2020).
pubmed: 32610045 pmcid: 7959181 doi: 10.1016/j.devcel.2020.06.010
Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).
pubmed: 29236692 pmcid: 5750076 doi: 10.1038/nature25023
Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).
pubmed: 23636326 pmcid: 4512754 doi: 10.1038/nature12122
Keith, C. T. & Schreiber, S. L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270, 50–51 (1995).
pubmed: 7569949 doi: 10.1126/science.270.5233.50
Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12–rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).
pubmed: 8662507 doi: 10.1126/science.273.5272.239
Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. Identification of an 11-kDa FKBP12–rapamycin-binding domain within the 289-kDa FKBP12–rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl Acad. Sci. USA 92, 4947–4951 (1995).
pubmed: 7539137 pmcid: 41824 doi: 10.1073/pnas.92.11.4947
Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).
pubmed: 1715244 doi: 10.1016/0092-8674(91)90124-H
Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structure of FKBP–FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).
pubmed: 1709302 doi: 10.1126/science.1709302
Harding, M. W., Galat, A., Uehling, D. E. & Schreiber, S. L. A receptor for the immunosuppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).
pubmed: 2477715 doi: 10.1038/341758a0
Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 58, 977–988 (2015).
pubmed: 26028537 doi: 10.1016/j.molcel.2015.04.031
Kim, D.-H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).
pubmed: 12718876 doi: 10.1016/S1097-2765(03)00114-X
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).
pubmed: 12150926 doi: 10.1016/S0092-8674(02)00833-4
Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).
pubmed: 12150925 doi: 10.1016/S0092-8674(02)00808-5
Vander Haar, E., Lee, S.-I., Bandhakavi, S., Griffin, T. J. & Kim, D.-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).
doi: 10.1038/ncb1547
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).
pubmed: 17386266 doi: 10.1016/j.molcel.2007.03.003
Pearce, L. R. et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 405, 513–522 (2007).
pubmed: 17461779 pmcid: 2267312 doi: 10.1042/BJ20070540
Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).
pubmed: 19446321 pmcid: 2758791 doi: 10.1016/j.cell.2009.03.046
Scaiola, A. et al. The 3.2-Å resolution structure of human mTORC2. Sci. Adv. 6, eabc1251 (2020).
pubmed: 33158864 pmcid: 7673708 doi: 10.1126/sciadv.abc1251
Aylett, C. H. S. et al. Architecture of human mTOR complex 1. Science 351, 48–52 (2016).
pubmed: 26678875 doi: 10.1126/science.aaa3870
Baretić, D., Berndt, A., Ohashi, Y., Johnson, C. M. & Williams, R. L. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat. Commun. 7, 11016 (2016).
pubmed: 27072897 pmcid: 4833857 doi: 10.1038/ncomms11016
Stuttfeld, E. et al. Architecture of the human mTORC2 core complex. eLife 7, e33101 (2018).
pubmed: 29424687 pmcid: 5837792 doi: 10.7554/eLife.33101
Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013).
pubmed: 23888043 pmcid: 3771538 doi: 10.1126/science.1236566
Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461–15464 (2003).
pubmed: 12604610 doi: 10.1074/jbc.C200665200
Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797–806 (2003).
pubmed: 12747827 doi: 10.1016/S0960-9822(03)00329-4
Yang, Q., Inoki, K., Ikenoue, T. & Guan, K.-L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes. Dev. 20, 2820–2832 (2006).
pubmed: 17043309 pmcid: 1619946 doi: 10.1101/gad.1461206
Tatebe, H. et al. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. eLife 6, e19594 (2017).
pubmed: 28264193 pmcid: 5340527 doi: 10.7554/eLife.19594
Tee, A. R. & Proud, C. G. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol. Cell Biol. 22, 1674–1683 (2002).
pubmed: 11865047 pmcid: 135612 doi: 10.1128/MCB.22.6.1674-1683.2002
Böhm, R. et al. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Mol. Cell 81, 2403–2416.e5 (2021).
pubmed: 33852892 doi: 10.1016/j.molcel.2021.03.031
Yang, H. et al. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat. Commun. 12, 339 (2021).
pubmed: 33436626 pmcid: 7804450 doi: 10.1038/s41467-020-20522-4
Hansmann, P. et al. Structure of the TSC2 GAP domain: mechanistic insight into catalysis and pathogenic mutations. Structure 28, 933–942.e4 (2020).
pubmed: 32502382 doi: 10.1016/j.str.2020.05.008
Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).
pubmed: 24529379 pmcid: 4030681 doi: 10.1016/j.cell.2013.11.049
Demetriades, C., Plescher, M. & Teleman, A. A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat. Commun. 7, 10662 (2016).
pubmed: 26868506 pmcid: 4754342 doi: 10.1038/ncomms10662
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).
pubmed: 15718470 doi: 10.1126/science.1106148
Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).
pubmed: 12172554 doi: 10.1038/ncb840
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).
pubmed: 12172553 doi: 10.1038/ncb839
Fitzian, K. et al. TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol. Cell 81, 2705–2721.e8 (2021).
pubmed: 33974911 doi: 10.1016/j.molcel.2021.04.019
Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).
pubmed: 15851026 doi: 10.1016/j.cell.2005.02.031
Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 101, 13489–13494 (2004).
pubmed: 15342917 pmcid: 518784 doi: 10.1073/pnas.0405659101
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).
pubmed: 16959574 doi: 10.1016/j.cell.2006.06.055
Lee, D.-F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).
pubmed: 17693255 doi: 10.1016/j.cell.2007.05.058
Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).
pubmed: 17851531 doi: 10.1038/nature06161
Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011).
pubmed: 21399626 pmcid: 3078618 doi: 10.1038/nature09932
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).
pubmed: 18439900 pmcid: 2674027 doi: 10.1016/j.molcel.2008.03.003
Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).
pubmed: 14651849 doi: 10.1016/S0092-8674(03)00929-2
Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).
pubmed: 15261145 doi: 10.1016/j.ccr.2004.06.007
DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).
pubmed: 18198340 pmcid: 2192757 doi: 10.1101/gad.1617608
Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).
pubmed: 15545625 pmcid: 534650 doi: 10.1101/gad.1256804
Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).
pubmed: 18692468 pmcid: 2758522 doi: 10.1016/j.cell.2008.06.028
Zaman, S., Lippman, S. I., Zhao, X. & Broach, J. R. How Saccharomyces responds to nutrients. Annu. Rev. Genet. 42, 27–81 (2008).
pubmed: 18303986 doi: 10.1146/annurev.genet.41.110306.130206
Chantranupong, L., Wolfson, R. L. & Sabatini, D. M. Nutrient-sensing mechanisms across evolution. Cell 161, 67–83 (2015).
pubmed: 25815986 pmcid: 4384161 doi: 10.1016/j.cell.2015.02.041
Wang, X., Campbell, L. E., Miller, C. M. & Proud, C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 334, 261–267 (1998).
pubmed: 9693128 pmcid: 1219687 doi: 10.1042/bj3340261
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).
pubmed: 18497260 pmcid: 2475333 doi: 10.1126/science.1157535
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).
pubmed: 18604198 pmcid: 2711503 doi: 10.1038/ncb1753
Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563–573 (2009).
pubmed: 19748353 doi: 10.1016/j.molcel.2009.06.033
Su, M.-Y. et al. Hybrid structure of the RagA/C–ragulator mTORC1 activation complex. Mol. Cell 68, 835–846.e3 (2017).
pubmed: 29107538 pmcid: 5722659 doi: 10.1016/j.molcel.2017.10.016
de Araujo, M. E. G. et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 358, 377–381 (2017).
pubmed: 28935770 doi: 10.1126/science.aao1583
Gong, R. et al. Crystal structure of the Gtr1p–Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668–1673 (2011).
pubmed: 21816923 pmcid: 3165931 doi: 10.1101/gad.16968011
Rogala, K. B. et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366, 468–475 (2019).
pubmed: 31601708 pmcid: 7176403 doi: 10.1126/science.aay0166
Anandapadamanaban, M. et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366, 203–210 (2019).
pubmed: 31601764 pmcid: 6795536 doi: 10.1126/science.aax3939
Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).
pubmed: 20381137 pmcid: 3024592 doi: 10.1016/j.cell.2010.02.024
Nada, S. et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO J. 28, 477–489 (2009).
pubmed: 19177150 pmcid: 2657578 doi: 10.1038/emboj.2008.308
Zhang, T., Péli-Gulli, M.-P., Yang, H., De Virgilio, C. & Ding, J. Ego3 functions as a homodimer to mediate the interaction between Gtr1–Gtr2 and Ego1 in the ego complex to activate TORC1. Structure 20, 2151–2160 (2012).
pubmed: 23123112 doi: 10.1016/j.str.2012.09.019
Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).
pubmed: 22980980 pmcid: 3517996 doi: 10.1016/j.cell.2012.07.032
Lawrence, R. E. et al. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase–Ragulator lysosomal scaffold. Nat. Cell Biol. 20, 1052–1063 (2018).
pubmed: 30061680 pmcid: 6279252 doi: 10.1038/s41556-018-0148-6
Napolitano, G., Di Malta, C. & Ballabio, A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol. 32, 920–931 (2022).
pubmed: 35654731 doi: 10.1016/j.tcb.2022.04.012
Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).
pubmed: 23723238 pmcid: 3728654 doi: 10.1126/science.1232044
Panchaud, N., Péli-Gulli, M.-P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).
pubmed: 23716719 doi: 10.1126/scisignal.2004112
Egri, S. B. et al. Cryo-EM structures of the human GATOR1–Rag–Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol. Cell 82, 1836–1849.e5 (2022).
pubmed: 35338845 pmcid: 9133170 doi: 10.1016/j.molcel.2022.03.002
Shen, K., Valenstein, M. L., Gu, X. & Sabatini, D. M. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J. Biol. Chem. 294, 2970–2975 (2019).
pubmed: 30651352 pmcid: 6393612 doi: 10.1074/jbc.AC119.007382
Tafur, L. et al. Cryo-EM structure of the SEA complex. Nature 611, 399–404 (2022).
pubmed: 36289347 pmcid: 9646525 doi: 10.1038/s41586-022-05370-0
Shen, K. et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature 556, 64–69 (2018).
pubmed: 29590090 pmcid: 5975964 doi: 10.1038/nature26158
Dokudovskaya, S. et al. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell Proteom. 10, M110.006478 (2011).
doi: 10.1074/mcp.M110.006478
Panchaud, N., Péli-Gulli, M.-P. & De Virgilio, C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12, 2948–2952 (2013).
pubmed: 23974112 pmcid: 3875668 doi: 10.4161/cc.26000
Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).
pubmed: 35831510 pmcid: 9464592 doi: 10.1038/s41586-022-04939-z
Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).
pubmed: 27487210 pmcid: 4988899 doi: 10.1038/nature19079
Saxton, R. A. et al. Structural basis for leucine sensing by the Sestrin2–mTORC1 pathway. Science 351, 53–58 (2016).
pubmed: 26586190 doi: 10.1126/science.aad2087
Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).
pubmed: 26449471 doi: 10.1126/science.aab2674
Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).
pubmed: 26972053 pmcid: 4808398 doi: 10.1016/j.cell.2016.02.035
Peng, M., Yin, N. & Li, M. O. SZT2 dictates GATOR control of mTORC1 signalling. Nature 543, 433–437 (2017).
pubmed: 28199315 pmcid: 5570594 doi: 10.1038/nature21378
Jiang, C. et al. Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol. Cell 83, 74–89.e9 (2023).
pubmed: 36528027 doi: 10.1016/j.molcel.2022.11.021
Yan, G. et al. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat. Cell Biol. 25, 754–764 (2023).
pubmed: 37037994 doi: 10.1038/s41556-023-01123-x
Chen, J. et al. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 596, 281–284 (2021).
pubmed: 34290409 doi: 10.1038/s41586-021-03768-w
Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442 (2017).
pubmed: 28199306 pmcid: 5360989 doi: 10.1038/nature21423
Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017).
pubmed: 29123071 pmcid: 5747364 doi: 10.1126/science.aao3265
Tang, X. et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. Sci. Adv. 8, eabn3868 (2022).
pubmed: 35776786 doi: 10.1126/sciadv.abn3868
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H
pubmed: 22053050 pmcid: 3211112 doi: 10.1126/science.1207056
Chung, C. Y.-S. et al. Covalent targeting of the vacuolar H
pubmed: 31285595 doi: 10.1038/s41589-019-0308-4
Jung, J., Genau, H. M. & Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 35, 2479–2494 (2015).
pubmed: 25963655 pmcid: 4475919 doi: 10.1128/MCB.00125-15
Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).
pubmed: 25561175 pmcid: 4376665 doi: 10.1038/nature14107
Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).
pubmed: 25567906 pmcid: 4295826 doi: 10.1126/science.1257132
Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12 (2017).
pubmed: 29053970 pmcid: 5704964 doi: 10.1016/j.cell.2017.09.046
Lei, H.-T., Mu, X., Hattne, J. & Gonen, T. A conformational change in the N terminus of SLC38A9 signals mTORC1 activation. Structure 29, 426–432.e8 (2021).
pubmed: 33296665 doi: 10.1016/j.str.2020.11.014
Lei, H.-T., Ma, J., Sanchez Martinez, S. & Gonen, T. Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat. Struct. Mol. Biol. 25, 522–527 (2018).
pubmed: 29872228 pmcid: 7346717 doi: 10.1038/s41594-018-0072-2
Fromm, S. A., Lawrence, R. E. & Hurley, J. H. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat. Struct. Mol. Biol. 27, 1017–1023 (2020).
pubmed: 32868926 pmcid: 7644641 doi: 10.1038/s41594-020-0490-9
Shen, K. & Sabatini, D. M. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc. Natl Acad. Sci. USA 115, 9545–9550 (2018).
pubmed: 30181260 pmcid: 6156610 doi: 10.1073/pnas.1811727115
Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110 (2012).
pubmed: 22424774 doi: 10.1016/j.molcel.2012.02.009
Tsun, Z.-Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).
pubmed: 24095279 doi: 10.1016/j.molcel.2013.09.016
Lawrence, R. E. et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366, 971–977 (2019).
pubmed: 31672913 pmcid: 6945816 doi: 10.1126/science.aax0364
Shen, K. et al. Cryo-EM structure of the human FLCN–FNIP2–Rag–Ragulator complex. Cell 179, 1319–1329.e8 (2019).
pubmed: 31704029 pmcid: 7008705 doi: 10.1016/j.cell.2019.10.036
Jansen, R. M. et al. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Sci. Adv. 8, eadd2926 (2022).
pubmed: 36103527 pmcid: 9473554 doi: 10.1126/sciadv.add2926
Péli-Gulli, M.-P., Sardu, A., Panchaud, N., Raucci, S. & De Virgilio, C. Amino acids stimulate TORC1 through Lst4–Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep. 13, 1–7 (2015).
pubmed: 26387955 doi: 10.1016/j.celrep.2015.08.059
Péli-Gulli, M.-P., Raucci, S., Hu, Z., Dengjel, J. & De Virgilio, C. Feedback inhibition of the Rag GTPase GAP complex Lst4–Lst7 safeguards TORC1 from hyperactivation by amino acid signals. Cell Rep. 20, 281–288 (2017).
pubmed: 28700931 doi: 10.1016/j.celrep.2017.06.058
Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).
pubmed: 22424946 doi: 10.1016/j.cell.2012.02.044
Dai, X. et al. AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation. Nat. Metab. 5, 265–276 (2023).
pubmed: 36732624 doi: 10.1038/s42255-022-00732-4
Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).
pubmed: 23263183 doi: 10.1038/nature11745
Li, M. et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Res. 31, 478–481 (2021).
pubmed: 33349646 doi: 10.1038/s41422-020-00456-8
Lee, M. N. et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell Biol. 29, 3991–4001 (2009).
pubmed: 19451232 pmcid: 2704738 doi: 10.1128/MCB.00165-09
Orozco, J. M. et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat. Metab. 2, 893–901 (2020).
pubmed: 32719541 pmcid: 7995735 doi: 10.1038/s42255-020-0250-5
Prouteau, M. et al. TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 550, 265–269 (2017).
pubmed: 28976958 pmcid: 5640987 doi: 10.1038/nature24021
Prouteau, M. et al. EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat. Struct. Mol. Biol. 30, 273–285 (2023).
pubmed: 36702972 pmcid: 10023571 doi: 10.1038/s41594-022-00912-6
Radhakrishnan, A., Rohatgi, R. & Siebold, C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat. Chem. Biol. 16, 1303–1313 (2020).
pubmed: 33199907 pmcid: 7872078 doi: 10.1038/s41589-020-00678-2
Wu, X., Yan, R., Cao, P., Qian, H. & Yan, N. Structural advances in sterol-sensing domain-containing proteins. Trends Biochem. Sci. 47, 289–300 (2022).
pubmed: 35012873 doi: 10.1016/j.tibs.2021.12.005
Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).
pubmed: 28841344 doi: 10.1146/annurev-biochem-062917-011852
Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213–224 (2012).
pubmed: 22414897 pmcid: 3597092 doi: 10.1038/nrm3312
Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).
pubmed: 25815993 pmcid: 4525717 doi: 10.1016/j.cell.2015.01.036
Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017).
pubmed: 28336668 pmcid: 5823611 doi: 10.1126/science.aag1417
Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022).
pubmed: 36007018 pmcid: 10023259 doi: 10.1126/science.abg6621
Thelen, A. M. & Zoncu, R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. 27, 833–850 (2017).
pubmed: 28838620 pmcid: 5653458 doi: 10.1016/j.tcb.2017.07.006
Infante, R. E. & Radhakrishnan, A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 6, e25466 (2017).
pubmed: 28414269 pmcid: 5433840 doi: 10.7554/eLife.25466
Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).
pubmed: 30072511 pmcid: 6568312 doi: 10.1126/science.aan5835
Mesmin, B. et al. A four-step cycle driven by PI
pubmed: 24209621 doi: 10.1016/j.cell.2013.09.056
Dong, R. et al. Endosome–ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).
pubmed: 27419871 pmcid: 4963242 doi: 10.1016/j.cell.2016.06.037
Lim, C.-Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).
pubmed: 31548609 pmcid: 6936960 doi: 10.1038/s41556-019-0391-5
Winkler, M. B. L. et al. Structural insight into eukaryotic sterol transport through Niemann–Pick type C proteins. Cell 179, 485–497.e18 (2019).
pubmed: 31543266 doi: 10.1016/j.cell.2019.08.038
Saha, P. et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. eLife 9, e57089 (2020).
pubmed: 32410728 pmcid: 7228765 doi: 10.7554/eLife.57089
Qian, H. et al. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 182, 98–111.e18 (2020).
pubmed: 32544384 doi: 10.1016/j.cell.2020.05.020
Gong, X. et al. Structural insights into the Niemann–Pick C1 (NPC1)-mediated cholesterol transfer and ebola infection. Cell 165, 1467–1478 (2016).
pubmed: 27238017 pmcid: 7111323 doi: 10.1016/j.cell.2016.05.022
Shen, K., Choe, A. & Sabatini, D. M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mtorc1 to respond rapidly to amino acid availability. Mol. Cell 68, 552–565.e8 (2017).
pubmed: 29056322 pmcid: 5674802 doi: 10.1016/j.molcel.2017.09.026
Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331–2336 (2015).
pubmed: 26543160 pmcid: 4691887 doi: 10.1101/gad.269324.115
Hoxhaj, G. et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 21, 1331–1346 (2017).
pubmed: 29091770 pmcid: 5689476 doi: 10.1016/j.celrep.2017.10.029
Emmanuel, N. et al. Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep. 19, 2665–2680 (2017).
pubmed: 28658616 doi: 10.1016/j.celrep.2017.05.043
Menon, D. et al. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J. Biol. Chem. 292, 6303–6311 (2017).
pubmed: 28223357 pmcid: 5391759 doi: 10.1074/jbc.M116.772988
Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).
pubmed: 25567907 pmcid: 4384888 doi: 10.1126/science.1259472
Düvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).
pubmed: 20670887 pmcid: 2946786 doi: 10.1016/j.molcel.2010.06.022
Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol. 45, 72–82 (2017).
pubmed: 28411448 pmcid: 5545101 doi: 10.1016/j.ceb.2017.02.012
Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).
pubmed: 9465032 pmcid: 19032 doi: 10.1073/pnas.95.4.1432
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998).
pubmed: 9603962 doi: 10.1074/jbc.273.23.14484
Philippe, L., van den Elzen, A. M. G., Watson, M. J. & Thoreen, C. C. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5′ TOP motifs. Proc. Natl Acad. Sci. USA 117, 5319–5328 (2020).
pubmed: 32094190 pmcid: 7071917 doi: 10.1073/pnas.1912864117
Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).
pubmed: 22552098 pmcid: 3347774 doi: 10.1038/nature11083
Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).
pubmed: 22367541 pmcid: 3663483 doi: 10.1038/nature10912
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
pubmed: 31768005 doi: 10.1038/s41580-019-0185-4
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
pubmed: 28283069 pmcid: 5394987 doi: 10.1016/j.cell.2017.02.004
Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J. & Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 24, 167–185 (2023).
pubmed: 36302887 doi: 10.1038/s41580-022-00542-2
Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).
pubmed: 19258318 pmcid: 2673298 doi: 10.1074/jbc.M900573200
Kamada, Y. et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell Biol. 30, 1049–1058 (2010).
pubmed: 19995911 doi: 10.1128/MCB.01344-09
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).
pubmed: 19211835 pmcid: 2663915 doi: 10.1091/mbc.e08-12-1248
Park, J.-M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547–564 (2016).
pubmed: 27046250 pmcid: 4835982 doi: 10.1080/15548627.2016.1140293
Ma, X. et al. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy 13, 592–607 (2017).
pubmed: 28059666 pmcid: 5361594 doi: 10.1080/15548627.2016.1269988
Strong, L. M. et al. Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy. eLife 10, e70372 (2021).
pubmed: 34505572 pmcid: 8455133 doi: 10.7554/eLife.70372
Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).
pubmed: 24954904 pmcid: 4104028 doi: 10.1016/j.molcel.2014.05.021
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).
pubmed: 19556463 doi: 10.1126/science.1174447
Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).
pubmed: 21752829 doi: 10.1093/hmg/ddr306
Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203–222 (2019).
pubmed: 31650096 doi: 10.1146/annurev-cancerbio-030518-055835
Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).
pubmed: 23604321 pmcid: 3699877 doi: 10.1038/ncb2718
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).
pubmed: 21617040 pmcid: 3638014 doi: 10.1126/science.1204592
O’Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).
pubmed: 23604316 pmcid: 3723461 doi: 10.1038/ncb2741
Evans, T. D. et al. TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Sci. Signal. 12, eaau2281 (2019).
pubmed: 31690633 pmcid: 6882500 doi: 10.1126/scisignal.aau2281
Puertollano, R., Ferguson, S. M., Brugarolas, J. & Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 37, e98804 (2018).
pubmed: 29764979 pmcid: 5983138 doi: 10.15252/embj.201798804
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).
pubmed: 22343943 pmcid: 3298007 doi: 10.1038/emboj.2012.32
Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
pubmed: 22692423 pmcid: 3437338 doi: 10.1126/scisignal.2002790
Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).
pubmed: 22576015 pmcid: 3427256 doi: 10.4161/auto.19653
Martina, J. A. et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9 (2014).
pubmed: 24448649 pmcid: 4696865 doi: 10.1126/scisignal.2004754
Napolitano, G. et al. A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome. Nature 585, 597–602 (2020).
pubmed: 32612235 pmcid: 7610377 doi: 10.1038/s41586-020-2444-0
Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491 (2013).
pubmed: 23401004 pmcid: 3575543 doi: 10.1083/jcb.201209135
Li, K. et al. Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. PLoS Biol. 20, e3001594 (2022).
pubmed: 35358174 pmcid: 9004751 doi: 10.1371/journal.pbio.3001594
Cui, Z. et al. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 614, 572–579 (2023).
pubmed: 36697823 pmcid: 9931586 doi: 10.1038/s41586-022-05652-7
Gollwitzer, P., Grützmacher, N., Wilhelm, S., Kümmel, D. & Demetriades, C. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat. Cell Biol. 24, 1394–1406 (2022).
pubmed: 36097072 pmcid: 9481461 doi: 10.1038/s41556-022-00976-y
Di Malta, C. et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 356, 1188–1192 (2017).
pubmed: 28619945 pmcid: 5730647 doi: 10.1126/science.aag2553
Malik, N. et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 380, eabj5559 (2023).
pubmed: 37079666 doi: 10.1126/science.abj5559
Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A. & Guan, K.-L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz–Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004).
pubmed: 15231735 pmcid: 443516 doi: 10.1101/gad.1199104
Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1–AKT–mTOR pathways. Cancer Res. 67, 3043–3053 (2007).
pubmed: 17409411 doi: 10.1158/0008-5472.CAN-06-4149
Tibarewal, P. et al. Long-term treatment of cancer-prone germline PTEN mutant mice with low-dose rapamycin extends lifespan and delays tumour development. J. Pathol. 258, 382–394 (2022).
pubmed: 36073856 pmcid: 9828006 doi: 10.1002/path.6009
Lin, F. et al. PI3K–mTOR pathway inhibition exhibits efficacy against high-grade glioma in clinically relevant mouse models. Clin. Cancer Res. 23, 1286–1298 (2017).
pubmed: 27553832 doi: 10.1158/1078-0432.CCR-16-1276
Thiepold, A.-L. et al. Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Brain 140, 2623–2638 (2017).
pubmed: 28969371 doi: 10.1093/brain/awx196
Chang, L. et al. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 4, e875 (2013).
pubmed: 24157869 pmcid: 3920940 doi: 10.1038/cddis.2013.407
Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004).
pubmed: 15156201 doi: 10.1038/nm1052
Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).
pubmed: 19629071 pmcid: 2756045 doi: 10.1038/nrc2676
Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).
pubmed: 26069186 pmcid: 4527963 doi: 10.1158/2159-8290.CD-14-1236
Krencz, I., Sebestyen, A. & Khoor, A. mTOR in lung neoplasms. Pathol. Oncol. Res. 26, 35–48 (2020).
pubmed: 32016810 doi: 10.1007/s12253-020-00796-1
Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).
pubmed: 17613433 doi: 10.1016/j.ccr.2007.05.008
Dankort, D. et al. Braf
pubmed: 19282848 pmcid: 2705918 doi: 10.1038/ng.356
Silva, J. M., Bulman, C. & McMahon, M. BRAF
pubmed: 24425783 pmcid: 3966216 doi: 10.1158/1541-7786.MCR-13-0224-T
Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat. Rev. Dis. Prim. 2, 16035 (2016).
pubmed: 27226234 doi: 10.1038/nrdp.2016.35
Almobarak, S. et al. Tuberous sclerosis complex: clinical spectrum and epilepsy: a retrospective chart review study. Transl. Neurosci. 9, 154–160 (2018).
pubmed: 30479846 pmcid: 6234476 doi: 10.1515/tnsci-2018-0023
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
pubmed: 22397650 pmcid: 4878653 doi: 10.1056/NEJMoa1113205
Møller, R. S. et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2, e118 (2016).
pubmed: 27830187 pmcid: 5089441 doi: 10.1212/NXG.0000000000000118
Zhao, S. et al. A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II. Exp. Mol. Med. 51, 1–11 (2019).
pubmed: 31748508 pmcid: 6802644
Li, J. et al. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res. 64, 6438–6443 (2004).
pubmed: 15374952 doi: 10.1158/0008-5472.CAN-03-3869
Seng, T. J. et al. Complex chromosome 22 rearrangements in astrocytic tumors identified using microsatellite and chromosome 22 tile path array analysis. Genes. Chromosom. Cancer 43, 181–193 (2005).
pubmed: 15770670 doi: 10.1002/gcc.20181
Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543, 65–71 (2017).
pubmed: 28199314 doi: 10.1038/nature21063
Mizuno, Y. et al. DEPDC5 deficiency contributes to resistance to leucine starvation via p62 accumulation in hepatocellular carcinoma. Sci. Rep. 8, 106 (2018).
pubmed: 29311600 pmcid: 5758822 doi: 10.1038/s41598-017-18323-9
Ricos, M. G. et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann. Neurol. 79, 120–131 (2016).
pubmed: 26505888 doi: 10.1002/ana.24547
Baldassari, S. et al. The landscape of epilepsy-related GATOR1 variants. Genet. Med. 21, 398–408 (2019).
pubmed: 30093711 doi: 10.1038/s41436-018-0060-2
Iffland, P. H., Carson, V., Bordey, A. & Crino, P. B. GATORopathies: the role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia 60, 2163–2173 (2019).
pubmed: 31625153 pmcid: 7155771 doi: 10.1111/epi.16370
Yuskaitis, C. J. et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 111, 91–101 (2018).
pubmed: 29274432 doi: 10.1016/j.nbd.2017.12.010
Marsan, E. et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol. Dis. 89, 180–189 (2016).
pubmed: 26873552 doi: 10.1016/j.nbd.2016.02.010
Sim, J. C. et al. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3. Ann. Neurol. 79, 132–137 (2016).
pubmed: 26285051 doi: 10.1002/ana.24502
Pajusalu, S., Reimand, T. & Õunap, K. Novel homozygous mutation in KPTN gene causing a familial intellectual disability-macrocephaly syndrome. Am. J. Med. Genet. A 167A, 1913–1915 (2015).
pubmed: 25847626 doi: 10.1002/ajmg.a.37105
Figlia, G. et al. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat. Cell Biol. 24, 1407–1421 (2022).
pubmed: 36097071 pmcid: 9481464 doi: 10.1038/s41556-022-00977-x
Okosun, J. et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat. Genet. 48, 183–188 (2016).
pubmed: 26691987 doi: 10.1038/ng.3473
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Kauffman, E. C. et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11, 465–475 (2014).
pubmed: 25048860 pmcid: 4551450 doi: 10.1038/nrurol.2014.162
Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dubé syndrome. Cancer Cell 2, 157–164 (2002).
pubmed: 12204536 doi: 10.1016/S1535-6108(02)00104-6
Clausen, L. et al. Folliculin variants linked to Birt–Hogg–Dubé syndrome are targeted for proteasomal degradation. PLoS Genet. 16, e1009187 (2020).
pubmed: 33137092 pmcid: 7660926 doi: 10.1371/journal.pgen.1009187
Hasumi, Y. et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc. Natl Acad. Sci. USA 106, 18722–18727 (2009).
pubmed: 19850877 pmcid: 2765925 doi: 10.1073/pnas.0908853106
Hong, S.-B. et al. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS ONE 5, e15793 (2010).
pubmed: 21209915 pmcid: 3012117 doi: 10.1371/journal.pone.0015793
van de Beek, I. et al. Familial multiple discoid fibromas is linked to a locus on chromosome 5 including the FNIP1 gene. J. Hum. Genet. 68, 273–279 (2023).
pubmed: 36599954 doi: 10.1038/s10038-022-01113-1
Alesi, N. et al. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat. Commun. 12, 4245 (2021).
pubmed: 34253722 pmcid: 8275687 doi: 10.1038/s41467-021-24499-6
Cangelosi, A. L. et al. Zonated leucine sensing by Sestrin–mTORC1 in the liver controls the response to dietary leucine. Science 377, 47–56 (2022).
pubmed: 35771919 pmcid: 10049859 doi: 10.1126/science.abi9547
Gu, X. et al. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 608, 209–216 (2022).
pubmed: 35859173 pmcid: 10112710 doi: 10.1038/s41586-022-04960-2
Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272–276 (2016).
pubmed: 27279227 pmcid: 4902179 doi: 10.1038/nature17963
Kato, T. et al. Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. J. Clin. Invest. 129, 2542–2554 (2019).
pubmed: 30990795 pmcid: 6546461 doi: 10.1172/JCI126859
Sengupta, S. et al. Discovery of NV-5138, the first selective brain mTORC1 activator. Sci. Rep. 9, 4107 (2019).
pubmed: 30858438 pmcid: 6412019 doi: 10.1038/s41598-019-40693-5
Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189–10194 (2003).
pubmed: 12524439 doi: 10.1074/jbc.M210837200
Tafur, L., Kefauver, J. & Loewith, R. Structural insights into TOR signaling. Genes 11, 885 (2020).
pubmed: 32759652 pmcid: 7464330 doi: 10.3390/genes11080885
Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).
pubmed: 22461615 pmcid: 3324089 doi: 10.1126/science.1215135
Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).
pubmed: 22521878 doi: 10.1016/j.cmet.2012.03.015
Yuan, M., Pino, E., Wu, L., Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579–29588 (2012).
pubmed: 22773877 pmcid: 3436168 doi: 10.1074/jbc.M112.386854
Gosis, B. S. et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 376, eabf8271 (2022).
pubmed: 35420934 pmcid: 9811404 doi: 10.1126/science.abf8271
Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).
pubmed: 31324799 pmcid: 6642166 doi: 10.1038/s41467-019-11174-0
Zhang, Z. et al. Brain-restricted mTOR inhibition with binary pharmacology. Nature 609, 822–828 (2022).
pubmed: 36104566 pmcid: 9492542 doi: 10.1038/s41586-022-05213-y

Auteurs

Claire Goul (C)

Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

Roberta Peruzzo (R)

Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

Roberto Zoncu (R)

Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. rzoncu@berkeley.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH