Dopamine regulates colonic glial cell-derived neurotrophic factor secretion through cholinergic dependent and independent pathways.

cholinergic neurons dopamine enteric glial cells glial cell-derived neurotrophic factor

Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
23 Aug 2023
Historique:
revised: 02 06 2023
received: 10 10 2022
accepted: 03 08 2023
pubmed: 24 8 2023
medline: 24 8 2023
entrez: 24 8 2023
Statut: aheadofprint

Résumé

Glial cell-derived neurotrophic factor (GDNF) maintains gut homeostasis. Dopamine promotes GDNF release in astrocytes. We investigated the regulation by dopamine of colonic GDNF secretion. D D Low concentrations of dopamine promote colonic GDNF secretion via D

Sections du résumé

BACKGROUND AND PURPOSE OBJECTIVE
Glial cell-derived neurotrophic factor (GDNF) maintains gut homeostasis. Dopamine promotes GDNF release in astrocytes. We investigated the regulation by dopamine of colonic GDNF secretion.
EXPERIMENTAL APPROACH METHODS
D
KEY RESULTS RESULTS
D
CONCLUSION AND IMPLICATIONS CONCLUSIONS
Low concentrations of dopamine promote colonic GDNF secretion via D

Identifiants

pubmed: 37614042
doi: 10.1111/bph.16226
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 81700462
Organisme : National Natural Science Foundation of China
ID : 32171121
Organisme : National Natural Science Foundation of China
ID : 32371174
Organisme : National Natural Science Foundation of China
ID : 31871159

Informations de copyright

© 2023 British Pharmacological Society.

Références

Ahmadzai, M. M., McClain, J. L., Dharshika, C., Seguella, L., Giancola, F., De Giorgio, R., & Gulbransen, B. D. (2022). LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction. Journal of Clinical Investigation, 132(4), e149464. https://doi.org/10.1172/JCI149464
Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., al-Hosaini, K., Bäck, M., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 176(Suppl 1), S27-S156. https://doi.org/10.1111/bph.15538
Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Koesling, D., … Wong, S. S. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 178(S1), S313-S411. https://doi.org/10.1111/bph.15542
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112
Bach-Ngohou, K., Mahe, M. M., Aubert, P., Abdo, H., Boni, S., Bourreille, A., Denis, M. G., Lardeux, B., Neunlist, M., & Masson, D. (2010). Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. The Journal of Physiology, 588(Pt 14), 2533-2544. https://doi.org/10.1113/jphysiol.2010.188409
Baghdadi, M. B., Ayyaz, A., Coquenlorge, S., Chu, B., Kumar, S., Streutker, C., Wrana, J. L., & Kim, T. H. (2022). Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell, 29(1), 86-100.e6. https://doi.org/10.1016/j.stem.2021.10.004
Bloch, A., Probst, A., Bissig, H., Adams, H., & Tolnay, M. (2006). Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathology and Applied Neurobiology, 32(3), 284-295. https://doi.org/10.1111/j.1365-2990.2006.00727.x
Boesmans, W., Cirillo, C., Van den Abbeel, V., Van den Haute, C., Depoortere, I., Tack, J., & Vanden, B. P. (2013). Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells. Neurogastroenterology and Motility, 25(2), e151-e160. https://doi.org/10.1111/nmo.12065
Boesmans, W., Hao, M. M., Fung, C., Li, Z., Van den Haute, C., Tack, J., Pachnis, V., & Vanden, B. P. (2019). Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia, 67(6), 1167-1178. https://doi.org/10.1002/glia.23596
Boudry, G., Morise, A., Seve, B., & Huerou-Luron, L. E. (2011). Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. Pediatric Research, 69(1), 4-9. https://doi.org/10.1203/PDR.0b013e3181fc9d13
Bush, T. G., Savidge, T. C., Freeman, T. C., Cox, H. J., Campbell, E. A., Mucke, L., Johnson, M. H., & Sofroniew, M. V. (1998). Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell, 93(2), 189-201. https://doi.org/10.1016/s0092-8674(00)81571-8
Cameron, H. L., & Perdue, M. H. (2007). Muscarinic acetylcholine receptor activation increases transcellular transport of macromolecules across mouse and human intestinal epithelium in vitro. Neurogastroenterology and Motility, 19(1), 47-56. https://doi.org/10.1111/j.1365-2982.2006.00845.x
Chen, G., Du, Y., Li, X., Kambey, P. A., Wang, L., Xia, Y., Tang, C., Shi, M., Zai-Li, L., Zai-E, X., Xiao-Ling, Q., & Dian-Shuai, G. (2021). Lower GDNF serum level is a possible risk factor for constipation in patients with Parkinson disease: A case-control study. Frontiers in Neurology, 12, 777591. https://doi.org/10.3389/fneur.2021.777591
Clairembault, T., Kamphuis, W., Leclair-Visonneau, L., Rolli-Derkinderen, M., Coron, E., Neunlist, M., Hol, E. M., & Derkinderen, P. (2014). Enteric GFAP expression and phosphorylation in Parkinson's disease. Journal of Neurochemistry, 130(6), 805-815. https://doi.org/10.1111/jnc.12742
Clairembault, T., Leclair-Visonneau, L., Neunlist, M., & Derkinderen, P. (2015). Enteric glial cells: New players in Parkinson's disease? Movement Disorders, 30(4), 494-498. https://doi.org/10.1002/mds.25979
Cornet, A., Savidge, T. C., Cabarrocas, J., Deng, W. L., Colombel, J. F., Lassmann, H., Desreumaux, P., & Liblau, R. S. (2001). Enterocolitis induced by autoimmune targeting of enteric glial cells: A possible mechanism in Crohn's disease? Proc Natl Acad Sci USA, 98, 13306-13311. https://doi.org/10.1073/pnas.231474098
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907-3913. https://doi.org/10.1111/bph.15868
de Moraes Thomasi, B. B., Valdetaro, L., Ricciardi, M. C., Hayashide, L., Fernandes, A. C., Mussauer, A., da Silva, M. L., da Cunha Faria-Melibeu, A., Ribeiro, M. G., de Mattos Coelho-Aguiar, J., & Campello-Costa, P. (2022). Enteric glial cell reactivity in colonic layers and mucosal modulation in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Brain Research Bulletin, 187, 111-121. https://doi.org/10.1016/j.brainresbull.2022.06.013
Delvalle, N. M., Fried, D. E., Rivera-Lopez, G., Gaudette, L., & Gulbransen, B. D. (2018). Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. American Journal of Physiology. Gastrointestinal and Liver Physiology, 315(4), G473-G483. https://doi.org/10.1152/ajpgi.00155.2018
Desai, J. K., Goyal, R. K., & Parmar, N. S. (1995). Gastric and duodenal anti-ulcer activity of SKF 38393, a dopamine D1-receptor agonist in rats. Journal of Pharmacy and Pharmacology, 47(9), 734-738. https://doi.org/10.1111/j.2042-7158.1995.tb06733.x
Desai, J. K., Goyal, R. K., & Parmar, N. S. (1999). Characterization of dopamine receptor subtypes involved in experimentally induced gastric and duodenal ulcers in rats. Journal of Pharmacy and Pharmacology, 51(2), 187-192. https://doi.org/10.1211/0022357991772123
Desai, J. K., & Parmar, N. S. (1994). Gastric and duodenal anti-ulcer activity of sulpiride, a dopamine D2 receptor antagonist, in rats. Agents and Actions, 42(3-4), 149-153. https://doi.org/10.1007/BF01983482
Devos, D., Lebouvier, T., Lardeux, B., Biraud, M., Rouaud, T., Pouclet, H., Coron, E., Bruley, D. V. S., Naveilhan, P., Nguyen, J. M., Neunlist, M., & Derkinderen, P. (2013). Colonic inflammation in Parkinson's disease. Neurobiology of Disease, 50, 42-48. https://doi.org/10.1016/j.nbd.2012.09.007
Drokhlyansky, E., Smillie, C. S., Van Wittenberghe, N., Ericsson, M., Griffin, G. K., Eraslan, G., Dionne, D., Cuoco, M. S., Goder-Reiser, M. N., Sharova, T., Kuksenko, O., Aguirre, A. J., Boland, G. M., Graham, D., Rozenblatt-Rosen, O., Xavier, R. J., & Regev, A. (2020). The human and mouse enteric nervous system at single-cell resolution. Cell, 182, 1606-1622.e23. https://doi.org/10.1016/j.cell.2020.08.003
Fedorova, T. D., Seidelin, L. B., Knudsen, K., Schacht, A. C., Geday, J., Pavese, N., Brooks, D. J., & Borghammer, P. (2017). Decreased intestinal acetylcholinesterase in early Parkinson disease: An (11)C-donepezil PET study. Neurology, 88(8), 775-781. https://doi.org/10.1212/WNL.0000000000003633
Feng, X. Y., Li, Y., Li, L. S., Li, X. F., Zheng, L. F., Zhang, X. L., Fan, R. F., Song, J., Hong, F., Zhang, Y., & Zhu, J. X. (2013). Dopamine D1 receptors mediate dopamine-induced duodenal epithelial ion transport in rats. Translational Research, 161(6), 486-494. https://doi.org/10.1016/j.trsl.2012.12.002
Feng, X. Y., Yan, J. T., Li, G. W., Liu, J. H., Fan, R. F., Li, S. C., Zheng, L. F., Zhang, Y., & Zhu, J. X. (2020). Source of dopamine in gastric juice and luminal dopamine-induced duodenal bicarbonate secretion via apical dopamine D2 receptors. British Journal of Pharmacology, 177(14), 3258-3272. https://doi.org/10.1111/bph.15047
Feng, X. Y., Zhang, D. N., Wang, Y. A., Fan, R. F., Hong, F., Zhang, Y., Li, Y., & Zhu, J. X. (2017). Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent. Acta Physiologica (Oxford, England), 220(1), 113-123. https://doi.org/10.1111/apha.12806
Gjerloff, T., Fedorova, T., Knudsen, K., Munk, O. L., Nahimi, A., Jacobsen, S., Danielsen, E. H., Terkelsen, A. J., Hansen, J., Pavese, N., Brooks, D. J., & Borghammer, P. (2015). Imaging acetylcholinesterase density in peripheral organs in Parkinson's disease with 11C-donepezil PET. Brain, 138(Pt 3), 653-663. https://doi.org/10.1093/brain/awu369
Grubisic, V., Bali, V., Fried, D. E., Eltzschig, H. K., Robson, S. C., Mazei-Robison, M. S., & Gulbransen, B. D. (2022). Enteric glial adenosine 2B receptor signaling mediates persistent epithelial barrier dysfunction following acute DSS colitis. Mucosal Immunology, 15(5), 964-976. https://doi.org/10.1038/s41385-022-00550-7
Kinor, N., Geffen, R., Golomb, E., Zinman, T., & Yadid, G. (2001). Dopamine increases glial cell line-derived neurotrophic factor in human fetal astrocytes. Glia, 33(2), 143-150. https://doi.org/10.1002/1098-1136(200102)33:2<143::aid-glia1013>3.0.co;2-3
Komiyama, T., Nakao, Y., Toyama, Y., Asou, H., Vacanti, C. A., & Vacanti, M. P. (2003). A novel technique to isolate adult Schwann cells for an artificial nerve conduit. Journal of Neuroscience Methods, 122(2), 195-200. https://doi.org/10.1016/s0165-0270(02)00320-5
Kuric, E., Wieloch, T., & Ruscher, K. (2013). Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke. Experimental Neurology, 247, 202-208. https://doi.org/10.1016/j.expneurol.2013.04.016
Li, Y., Zhang, Y., Zhang, X. L., Feng, X. Y., Liu, C. Z., Zhang, X. N., Quan, Z. S., Yan, J. T., & Zhu, J. X. (2019). Dopamine promotes colonic mucus secretion through dopamine D5 receptor in rats. American Journal of Physiology. Cell Physiology, 316(3), C393-C403. https://doi.org/10.1152/ajpcell.00261.2017
Li, Z. S., Schmauss, C., Cuenca, A., Ratcliffe, E., & Gershon, M. D. (2006). Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: Analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. Journal of Neuroscience, 26(10), 2798-2807. https://doi.org/10.1523/JNEUROSCI.4720-05.2006
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178
Liu, X. Y., Zheng, L. F., Fan, Y. Y., Shen, Q. Y., Qi, Y., Li, G. W., Sun, Q., Zhang, Y., Feng, X. Y., & Zhu, J. X. (2022). Activation of dopamine D2 receptor promotes pepsinogen secretion by suppressing somatostatin release from the mouse gastric mucosa. American Journal of Physiology. Cell Physiology, 322, C327-C337. https://doi.org/10.1152/ajpcell.00385.2021
Lonka-Nevalaita, L., Lume, M., Leppanen, S., Jokitalo, E., Peranen, J., & Saarma, M. (2010). Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. Journal of Neuroscience, 30(34), 11403-11413. https://doi.org/10.1523/JNEUROSCI.5888-09.2010
Meir, M., Burkard, N., Ungewiss, H., Diefenbacher, M., Flemming, S., Kannapin, F., Germer, C. T., Schweinlin, M., Metzger, M., Waschke, J., & Schlegel, N. (2019). Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. Journal of Clinical Investigation, 129(7), 2824-2840. https://doi.org/10.1172/JCI120261
Meira, D. F., Casado-Bedmar, M., Marten, L. C., Jones, M. P., Walter, S. A., & Keita, A. V. (2021). Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome. Neurogastroenterology and Motility, 33(11), e14130. https://doi.org/10.1111/nmo.14130
Naso, M. F., Tomkowicz, B., Perry, W. R., & Strohl, W. R. (2017). Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs, 31(4), 317-334. https://doi.org/10.1007/s40259-017-0234-5
Palma, J. A., & Kaufmann, H. (2018 Mar). Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Movement Disorders, 33(3), 372-390. https://doi.org/10.1002/mds.27344
Pellegrini, C., Fornai, M., Colucci, R., Tirotta, E., Blandini, F., Levandis, G., Cerri, S., Segnani, C., Ippolito, C., Bernardini, N., Cseri, K., Blandizzi, C., Hasko, G., & Antonioli, L. (2016). Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. Journal of Neuroinflammation, 13(1), 146. https://doi.org/10.1186/s12974-016-0608-5
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020 Aug). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. British Journal of Pharmacology, 177(16), 3617-3624. https://doi.org/10.1111/bph.15193
Perez-Pardo, P., Dodiya, H. B., Engen, P. A., Forsyth, C. B., Huschens, A. M., Shaikh, M., Voigt, R. M., Naqib, A., Green, S. J., Kordower, J. H., Shannon, K. M., Garssen, J., Kraneveld, A. D., & Keshavarzian, A. (2019). Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice. Gut, 68(5), 829-843. https://doi.org/10.1136/gutjnl-2018-316844
Progatzky, F., Shapiro, M., Chng, S. H., Garcia-Cassani, B., Classon, C. H., Sevgi, S., Laddach, A., Bon-Frauches, A. C., Lasrado, R., Rahim, M., Amaniti, E. M., Boeing, S., Shah, K., Entwistle, L. J., Suarez-Bonnet, A., Wilson, M. S., Stockinger, B., & Pachnis, V. (2021). Regulation of intestinal immunity and tissue repair by enteric glia. Nature, 599(7883), 125-130. https://doi.org/10.1038/s41586-021-04006-z
Savidge, T. C., Newman, P., Pothoulakis, C., Ruhl, A., Neunlist, M., Bourreille, A., Hurst, R., & Sofroniew, M. V. (2007). Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology, 132(4), 1344-1358. https://doi.org/10.1053/j.gastro.2007.01.051
Schonkeren, S. L., Küthe, T. T., Idris, M., Bon-Frauches, A. C., Boesmans, W., & Melotte, V. (2022 Feb). The gut brain in a dish: Murine primary enteric nervous system cell cultures. Neurogastroenterology and Motility, 34(2), e14215. https://doi.org/10.1111/nmo.14215
Shao, W., Zhang, S. Z., Tang, M., Zhang, X. H., Zhou, Z., Yin, Y. Q., Zhou, Q. B., Huang, Y. Y., Liu, Y. J., Wawrousek, E., Chen, T., Li, S. B., Xu, M., Zhou, J. N., Hu, G., & Zhou, J. W. (2013). Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature, 7, 90-94. https://doi.org/10.1038/nature11748
Shichijo, K., Sakurai-Yamashita, Y., Sekine, I., & Taniyama, K. (1997). Neuronal release of endogenous dopamine from corpus of Guinea pig stomach. The American Journal of Physiology, 273(5), G1044-G1050. https://doi.org/10.1152/ajpgi.1997.273.5.G1044
Smith, T. H., Ngwainmbi, J., Grider, J. R., Dewey, W. L., & Akbarali, H. I. (2013). An in-vitro preparation of isolated enteric neurons and glia from the myenteric plexus of the adult mouse. Journal of Visualized Experiments, 78, 50688. https://doi.org/10.3791/50688
Sundaresan, S., Meininger, C. A., Kang, A. J., Photenhauer, A. L., Hayes, M. M., Sahoo, N., Grembecka, J., Cierpicki, T., Ding, L., Giordano, T. J., Else, T., Madrigal, D. J., Low, M. J., Campbell, F., Baker, A. M., Xu, H., Wright, N. A., & Merchant, J. L. (2017). Gastrin induces nuclear export and proteasome degradation of Menin in enteric glial cells. Gastroenterology, 153(6), 1555-1567. https://doi.org/10.1053/j.gastro.2017.08.038
Tian, Y. M., Chen, X., Luo, D. Z., Zhang, X. H., Xue, H., Zheng, L. F., Yang, N., Wang, X. M., & Zhu, J. X. (2008). Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson's disease. Neuroscience, 153(3), 634-644. https://doi.org/10.1016/j.neuroscience.2008.02.033
Tonini, M. (1996). Recent advances in the pharmacology of gastrointestinal prokinetics. Pharmacol Res. Apr-May, 33(4-5), 217-226. https://doi.org/10.1006/phrs.1996.0030
Turco, F., Sarnelli, G., Cirillo, C., Palumbo, I., De Giorgi, F., D'Alessandro, A., Cammarota, M., Giuliano, M., & Cuomo, R. (2014). Enteroglial-derived S100B protein integrates bacteria-induced toll-like receptor signalling in human enteric glial cells. Gut, 63(1), 105-115. https://doi.org/10.1136/gutjnl-2012-302090
Yan, J. T., Liu, X. Y., Liu, J. H., Li, G. W., Zheng, L. F., Zhang, X. L., Zhang, Y., Feng, X. Y., & Zhu, J. X. (2021). Reduced acetylcholine and elevated muscarinic receptor 2 in duodenal mucosa contribute to the impairment of mucus secretion in 6-hydroxydopamine-induced Parkinson's disease rats. Cell and Tissue Research, 386(2), 249-260. https://doi.org/10.1007/s00441-021-03515-7
Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z., & Zhou, R. (2015). Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 160(1-2), 62-73. https://doi.org/10.1016/j.cell.2014.11.047
Yang, N., Liu, S. M., Zheng, L. F., Ji, T., Li, Y., Mi, X. L., Xue, H., Ren, W., Xu, J. D., Zhang, X. H., Li, L. S., Zhang, Y., & Zhu, J. X. (2010). Activation of submucosal 5-HT(3) receptors elicits a somatostatin-dependent inhibition of ion secretion in rat colon. British Journal of Pharmacology, 159(8), 1623-1625. https://doi.org/10.1111/j.1476-5381.2010.00653.x
Zeng, J., Yu, H., & Gan, H. T. (2021). Glial cell line-derived neurotrophic factor ameliorates dextran sulfate sodium-induced colitis in mice via a macrophage-mediated pathway. International Immunopharmacology, 100, 108143. https://doi.org/10.1016/j.intimp.2021.108143
Zhang, D. K., He, F. Q., Li, T. K., Pang, X. H., Cui, D. J., Xie, Q., Huang, X. L., & Gan, H. T. (2010). Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. Journal of Pathology, 222(2), 213-222. https://doi.org/10.1002/path.2749
Zhang, X., Guo, H., Xu, J., Li, Y., Li, L., Zhang, X., Li, X., Fan, R., Zhang, Y., Duan, Z., & Zhu, J. (2012). Dopamine receptor D1 mediates the inhibition of dopamine on the distal colonic motility. Translational Research, 159(5), 407-414. https://doi.org/10.1016/j.trsl.2012.01.002
Zhang, X., Li, Y., Liu, C., Fan, R., Wang, P., Zheng, L., Hong, F., Feng, X., Zhang, Y., Li, L., & Zhu, J. (2015). Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Translational Research, 166(2), 152-162. https://doi.org/10.1016/j.trsl.2015.02.003
Zhang, X. L., Zhang, X. H., Yu, X., Zheng, L. F., Feng, X. Y., Liu, C. Z., Quan, Z. S., Zhang, Y., & Zhu, J. X. (2021). Enhanced contractive tension and upregulated muscarinic receptor 2/3 in Colorectum contribute to constipation in 6-Hydroxydopamine-induced Parkinson's disease rats. Frontiers in Aging Neuroscience, 13, 770841. https://doi.org/10.3389/fnagi.2021.770841
Zheng, L. F., Song, J., Fan, R. F., Chen, C. L., Ren, Q. Z., Zhang, X. L., Feng, X. Y., Zhang, Y., Li, L. S., & Zhu, J. X. (2014). The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiologica (Oxford, England), 211(2), 434-446. https://doi.org/10.1111/apha.12229

Auteurs

Xiao-Li Zhang (XL)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Qi Sun (Q)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Zhu-Sheng Quan (ZS)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Liang Wu (L)

Endoscopy Center, Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.

Zi-Ming Liu (ZM)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Yan-Qi Xia (YQ)

Grade 2020 Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Qian-Yi Wang (QY)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Yue Zhang (Y)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Jin-Xia Zhu (JX)

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Classifications MeSH