Bio-Inspired Polyanionic Electrolytes for Highly Stable Zinc-Ion Batteries.

Bio-Inspired Electrolyte Interface Engineering Zinc-Ion Batteries in situ SEI

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
09 Oct 2023
Historique:
received: 03 08 2023
medline: 24 8 2023
pubmed: 24 8 2023
entrez: 24 8 2023
Statut: ppublish

Résumé

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO

Identifiants

pubmed: 37615518
doi: 10.1002/anie.202311268
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202311268

Subventions

Organisme : Engineering and Physical Sciences Research Council
ID : EP/V027433/3
Organisme : Faraday Institution
ID : FIRG050
Organisme : Engineering and Physical Sciences Research Council
ID : EP/Y008707/1
Organisme : UKRI
ID : 101077226; EP/Y008707/1
Organisme : Science and Technology Facilities Council
ID : ST/R006873/1

Informations de copyright

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

Y. Liu, G. He, H. Jiang, I. P. Parkin, P. R. Shearing, D. J. Brett, Adv. Funct. Mater. 2021, 31, 2010445.
 
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 5374;
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480-2501.
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13180-13191.
 
X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. Brett, D. Han, ACS Energy Lett. 2021, 6, 395-403;
P. Lin, J. Cong, J. Li, M. Zhang, P. Lai, J. Zeng, Y. Yang, J. Zhao, Energy Storage Mater. 2022, 49, 172-180;
B. W. Olbasa, C. J. Huang, F. W. Fenta, S. K. Jiang, S. A. Chala, H. C. Tao, Y. Nikodimos, C. C. Wang, H. S. Sheu, Y. W. Yang, Adv. Funct. Mater. 2022, 32, 2103959.
 
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 2100186;
Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li, L. Wang, T. Ye, E. He, J. Wang, H. Chen, Adv. Funct. Mater. 2021, 31, 2107652;
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng, J. Hu, G. Zou, H. Hou, X. Ji, Adv. Energy Mater. 2022, 12, 2200665.
W. Yuan, G. Ma, X. Nie, Y. Wang, S. Di, L. Wang, J. Wang, S. Shen, N. Zhang, Chem. Eng. J. 2022, 431, 134076.
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu, J. Zhang, Z. Liu, M. Wang, N. Liu, L. Fan, Energy Environ. Sci. 2023, 16, 275-284.
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energy Environ. Sci. 2021, 14, 3609-3620.
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao, J. Liu, W. K. Pang, J. Liu, P. Rao, Q. Wang, Energy Environ. Sci. 2021, 14, 5947-5957.
H. Dong, J. Li, S. Zhao, Y. Jiao, J. Chen, Y. Tan, D. J. Brett, G. He, I. P. Parkin, ACS Appl. Mater. Interfaces 2021, 13, 745-754.
N. Chandıa, B. Matsuhiro, A. Vásquez, Carbohydr. Polym. 2001, 46, 81-87.
 
A. Sadiq, A. Choubey, A. Bajpai, J. Chil. Chem. Soc. 2018, 63, 4077-4081;
Y. Liu, J. Zhao, C. Zhang, H. Ji, P. Zhu, J. Macromol. Sci. Part B 2014, 53, 1074-1089.
P. a Kanti, K. Srigowri, J. Madhuri, B. Smitha, S. Sridhar, Sep. Purif. Technol. 2004, 40, 259-266.
 
C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K. A. Persson, L. F. Nazar, ACS Energy Lett. 2022, 7, 533-540;
L. E. Blanc, D. Kundu, L. F. Nazar, Joule 2020, 4, 771-799.
 
K. Y. Kwon, T. H. Jo, J. S. Kim, F. Hasan, H. D. Yoo, ACS Appl. Mater. Interfaces 2020, 12, 42612-42621;
T. K. Hoang, K. E. K. Sun, P. Chen, RSC Adv. 2015, 5, 41677-41691.
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938-1949.
H. Jia, M. Qiu, C. Lan, H. Liu, M. Dirican, S. Fu, X. Zhang, Adv. Sci. 2022, 9, 2103952.
 
A. J. Bard, L. R. Faulkner, Electrochem. Methods 2001, 2, 580-632;
J. Newman, N. P. Balsara, Electrochemical systems, John Wiley & Sons, Hoboken, 2021.
Z. Hou, Y. Gao, R. Zhou, B. Zhang, Adv. Funct. Mater. 2022, 32, 2107584.
H. Dong, X. Hu, G. He, Nanoscale 2022, 14, 14544-14551.
X. Liu, F. Yang, W. Xu, Y. Zeng, J. He, X. Lu, Adv. Sci. 2020, 7, 2002173.
 
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen, Y. Li, H. Huang, C. Zhi, Adv. Mater. 2021, 33, 2007406;
L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.
M. Wahlqvist, A. Shchukarev, J. Electron Spectrosc. Relat. Phenom. 2007, 156, 310-314.
S. H. Baek, Y. J. Cho, J. M. Park, P. Xiong, J. S. Yeon, H. H. Rana, J. H. Park, G. Jang, S. J. Lee, H. S. Park, Int. J. Energy Res. 2022, 46, 7201-7214.
T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, R. Zenobi, Anal. Bioanal. Chem. 2008, 391, 1907-1916.
A. Pragya, S. Mutalik, M. W. Younas, S.-K. Pang, P.-K. So, F. Wang, Z. Zheng, N. Noor, RSC Adv. 2021, 11, 10710-10726.
N. Dong, F. Zhang, H. Pan, Chem. Sci. 2022, 13, 8243.
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 5374.
Z. Sun, F. Li, J. Ding, Z. Lin, M. Xu, M. Zhu, J. Liu, ACS Energy Lett. 2023, 8, 2478.
Z. Zhao, X. Zhou, B. Zhang, F. Huang, Y. Wang, Z. Ma, J. Liu, Angew. Chem. Int. Ed. 2023, 62, e202308738.
L. Xi, D. Zhang, X. Xu, Y. Wu, F. Li, S. Yao, M. Zhu, J. Liu, ChemSusChem 2023, 16, e202202158.

Auteurs

Haobo Dong (H)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Xueying Hu (X)

Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Ruirui Liu (R)

Key Laboratory of Comprehensive and Highly Efficient Util, Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Mengzheng Ouyang (M)

Department of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK.

Hongzhen He (H)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Tianlei Wang (T)

Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Xuan Gao (X)

Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Yuhang Dai (Y)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Wei Zhang (W)

Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Yiyang Liu (Y)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Yongquan Zhou (Y)

Key Laboratory of Comprehensive and Highly Efficient Util, Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Dan J L Brett (DJL)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Ivan P Parkin (IP)

Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Paul R Shearing (PR)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Guanjie He (G)

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

Classifications MeSH