Design and characterization of a novel tumor-homing cell-penetrating peptide for drug delivery in TGFBR3 high-expressing tumors.

Type III transforming growth factor β receptor (TGFBR3) apoptosis bone morphogenetic protein 4 (BMP4) trichosanthin (TCS) tumor-homing cell-penetrating peptide

Journal

Chemical biology & drug design
ISSN: 1747-0285
Titre abrégé: Chem Biol Drug Des
Pays: England
ID NLM: 101262549

Informations de publication

Date de publication:
12 2023
Historique:
revised: 03 06 2023
received: 22 02 2023
accepted: 14 08 2023
medline: 9 11 2023
pubmed: 25 8 2023
entrez: 24 8 2023
Statut: ppublish

Résumé

Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor β receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.

Identifiants

pubmed: 37620132
doi: 10.1111/cbdd.14333
doi:

Substances chimiques

betaglycan 145170-29-2
Cell-Penetrating Peptides 0
Receptors, Transforming Growth Factor beta 0
Proteoglycans 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1421-1434

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

An, Z., Aksoy, O., Zheng, T., Fan, Q. W., & Weiss, W. A. (2018). Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 37(12), 1561-1575.
Batlle, E., & Massague, J. (2019). Transforming growth factor-beta signaling in immunity and cancer. Immunity, 50(4), 924-940.
Bernabeu, C., Lopez-Novoa, J. M., & Quintanilla, M. (2009). The emerging role of TGF-beta superfamily coreceptors in cancer. Biochimica et Biophysica Acta, 1792(10), 954-973.
Cheng, H., Yang, T., Ma, J., Jiang, J., & Wang, P. (2020). The aggregation kinetics of manganese oxides nanoparticles in Al(III) electrolyte solutions: Roles of distinct Al(III) species and natural organic matters. Science of the Total Environment, 744, 140814.
Chistiakov, D. A., Chekhonin, I. V., & Chekhonin, V. P. (2017). The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. European Journal of Pharmacology, 810, 70-82.
Chong, C. R., & Janne, P. A. (2013). The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature Medicine, 19(11), 1389-1400.
Copland, J. A., Luxon, B. A., Ajani, L., Maity, T., Campagnaro, E., Guo, H., LeGrand, S. N., Tamboli, P., & Wood, C. G. (2003). Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene, 22(39), 8053-8062.
Derynck, R., & Budi, E. H. (2019). Specificity, versatility, and control of TGF-beta family signaling. Science Signaling, 12(570), eaav5183.
Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor beta in human cancer. Journal of Clinical Oncology, 23(9), 2078-2093.
Fang, W. Y., Kuo, Y. Z., Chang, J. Y., Hsiao, J. R., Kao, H. Y., Tsai, S. T., & Wu, L. W. (2020). The tumor suppressor TGFBR3 blocks lymph node metastasis in head and neck cancer. Cancers (Basel), 12(6), 1375.
Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A., & Blobe, G. C. (2008). TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis, 29(3), 528-535.
Fotoohi-Ardakani, G., Kheirollahi, M., Zarei Jaliani, H., Noorian, M., & Ansariniyia, H. (2019). Targeting MCF-7 cell line by listeriolysin O pore forming toxin fusion with AHNP targeted peptide. Advanced Biomedical Research, 8, 33.
Gatza, C. E., Holtzhausen, A., Kirkbride, K. C., Morton, A., Gatza, M. L., Datto, M. B., & Blobe, G. C. (2011). Type III TGF-beta receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia, 13(8), 758-770.
Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-beta receptor in human cancer. Cellular Signalling, 22(8), 1163-1174.
Genta, I., Chiesa, E., Colzani, B., Modena, T., Conti, B., & Dorati, R. (2017). GE11 peptide as an active targeting agent in antitumor therapy: A minireview. Pharmaceutics, 10(1), 2.
Greally, M., Kelly, C. M., & Cercek, A. (2018). HER2: An emerging target in colorectal cancer. Current Problems in Cancer, 42(6), 560-571.
Guo, W. T., & Dong, D. L. (2014). Bone morphogenetic protein-4: A novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Failure Reviews, 19(6), 781-788.
Hempel, N., How, T., Dong, M., Murphy, S. K., Fields, T. A., & Blobe, G. C. (2007). Loss of betaglycan expression in ovarian cancer: Role in motility and invasion. Cancer Research, 67(11), 5231-5238.
Kang, S., Lee, S., & Park, S. (2020). iRGD peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery. Polymers (Basel), 12(9), 1906.
Kobayashi, S., Boggon, T. J., Dayaram, T., Jänne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G., & Halmos, B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 352(8), 786-792.
Lebrun, P., Raze, D., Fritzinger, B., Wieruszeski, J. M., Biet, F., Dose, A., Carpentier, M., Schwarzer, D., Allain, F., Lippens, G., & Locht, C. (2012). Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS ONE, 7(3), e32421.
Li, C., Cao, X. W., Zhao, J., & Wang, F. J. (2020). Effective therapeutic drug delivery by GALA3, an endosomal escape peptide with reduced hydrophobicity. The Journal of Membrane Biology, 253(2), 139-152.
Lopez-Casillas, F., Wrana, J. L., & Massague, J. (1993). Betaglycan presents ligand to the TGF beta signaling receptor. Cell, 73(7), 1435-1444.
Lu, J. Q., Wong, K. B., & Shaw, P. C. (2022). A sixty-year research and development of trichosanthin, a ribosome-inactivating protein. Toxins (Basel), 14(3), 178.
Lu, Y. Z., Li, P. F., Li, Y. Z., Luo, F., Guo, C., Lin, B., Cao, X. W., Zhao, J., & Wang, F. J. (2016). Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity. Fitoterapia, 112, 183-190.
Mathew, M., & Verma, R. S. (2009). Humanized immunotoxins: A new generation of immunotoxins for targeted cancer therapy. Cancer Science, 100(8), 1359-1365.
Manavalan, B., Subramaniyam, S., Shin, T. H., Kim, M. O., & Lee, G. (2018). Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. Journal of proteome research, 17(8), 2715-2726. 10.1021/acs.jproteome.8b00148
Moore-Smith, L., & Pasche, B. (2011). TGFBR1 signaling and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 16(2), 89-95.
Moreno, P., Mantey, S. A., Lee, S. H., Ramos-Álvarez, I., Moody, T. W., & Jensen, R. T. (2018). A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides, 101, 213-226.
Normanno, N., de Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., de Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2-16.
Oshima, M., Oshima, H., & Taketo, M. M. (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Developmental Biology, 179(1), 297-302.
Peng, Y., Li, X., Liu, H., Deng, X., She, C., Liu, C., Wang, X., & Liu, A. (2023). Retraction note: microRNA-18a from M2 macrophages inhibits TGFBR3 to promote nasopharyngeal carcinoma progression and tumor growth via TGF-beta signaling pathway. Nanoscale Research Letters, 18(1), 26.
Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., Palmero, R., Garcia-Gomez, R., Pallares, C., Sanchez, J. M., Porta, R., Cobo, M., Garrido, P., Longo, F., Moran, T., Insa, A., de Marinis, F., Corre, R., Bover, I., … Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. The Lancet Oncology, 13(3), 239-246.
Santibanez, J. F., Quintanilla, M., & Bernabeu, C. (2011). TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clinical Science (London, England), 121(6), 233-251.
Shibuya, M. (2015). VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocrine, Metabolic & Immune Disorders Drug Targets, 15(2), 135-144.
Srinivasarao, M., & Low, P. S. (2017). Ligand-targeted drug delivery. Chemical Reviews, 117(19), 12133-12164.
Sun, F., Li, X., Duan, W. Q., Tian, W., Gao, M., Yang, J., Wu, X. Y., Huang, D., Xia, W., Han, Y. N., Wang, J. X., Liu, Y. X., Dong, C. J., Zhao, D., Ban, T., & Chu, W. F. (2017). Transforming growth factor-beta receptor III is a potential regulator of ischemia-induced cardiomyocyte apoptosis. Journal of the American Heart Association, 6(6), e005357.
Takahashi, K., Akatsu, Y., Podyma-Inoue, K. A., Matsumoto, T., Takahashi, H., Yoshimatsu, Y., Koinuma, D., Shirouzu, M., Miyazono, K., & Watabe, T. (2020). Targeting all transforming growth factor-beta isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. The Journal of Biological Chemistry, 295(36), 12559-12572.
Tan, M. J., Cao, X. W., Li, P. F., Zhai, Y. Z., Zhou, Y., Liu, Y. J., Zhao, J., & Wang, F. J. (2017). Effectively enhancing cytotoxic and apoptotic effects of alpha-momorcharin by integrating a heparin-binding peptide. Biotechnology and Applied Biochemistry, 64(6), 918-926.
Turley, R. S., Finger, E. C., Hempel, N., How, T., Fields, T. A., & Blobe, G. C. (2007). The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Research, 67(3), 1090-1098.
Vander Ark, A., Cao, J., & Li, X. (2018). TGF-beta receptors: In and beyond TGF-beta signaling. Cellular Signalling, 52, 112-120.
Velasco-Loyden, G., Arribas, J., & Lopez-Casillas, F. (2004). The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. The Journal of Biological Chemistry, 279(9), 7721-7733.
Wang, H., Zhang, Q., Wang, B., Wu, W. J., Wei, J., Li, P., & Huang, R. (2018). miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. European Journal of Cell Biology, 97(4), 257-268.
Yang, E., Mundy, C., Rappaport, E. F., Pacifici, M., & Billings, P. C. (2019). Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function. PLoS ONE, 14(9), e0222784.
Yue, Y., Zhibo, S., Feng, L., Yuanzhang, B., & Fei, W. (2021). SNHG5 protects chondrocytes in interleukin-1beta-stimulated osteoarthritis via regulating miR-181a-5p/TGFBR3 axis. Journal of Biochemical and Molecular Toxicology, 35(10), e22866.
Zhang, X., Chen, Y., Li, Z., Han, X., & Liang, Y. (2020). TGFBR3 is an independent unfavourable prognostic marker in oesophageal squamous cell cancer and is positively correlated with Ki-67. International Journal of Experimental Pathology, 101(6), 223-229.
Zhou, C., Wu, Y. L., Chen, G., Feng, J., Liu, X. Q., Wang, C., Zhang, S., Wang, J., Zhou, S., Ren, S., Lu, S., Zhang, L., Hu, C., Hu, C., Luo, Y., Chen, L., Ye, M., Huang, J., Zhi, X., … You, C. (2011). Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. The Lancet Oncology, 12(8), 735-742.

Auteurs

Yi-Jie Wu (YJ)

Department of Applied Biology, East China University of Science and Technology, Shanghai, China.

Jin Lei (J)

Department of Applied Biology, East China University of Science and Technology, Shanghai, China.

Jian Zhao (J)

Department of Applied Biology, East China University of Science and Technology, Shanghai, China.
ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China.

Xue-Wei Cao (XW)

Department of Applied Biology, East China University of Science and Technology, Shanghai, China.
ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China.

Fu-Jun Wang (FJ)

ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China.
New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd, Dongyang, China.
Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH