Role of interneuron subtypes in controlling trial-by-trial output variability in the neocortex.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
25 08 2023
Historique:
received: 13 12 2022
accepted: 08 08 2023
medline: 28 8 2023
pubmed: 25 8 2023
entrez: 24 8 2023
Statut: epublish

Résumé

Trial-by-trial variability is a ubiquitous property of neuronal activity in vivo which shapes the stimulus response. Computational models have revealed how local network structure and feedforward inputs shape the trial-by-trial variability. However, the role of input statistics and different interneuron subtypes in this process is less understood. To address this, we investigate the dynamics of stimulus response in a cortical microcircuit model with one excitatory and three inhibitory interneuron populations (PV, SST, VIP). Our findings demonstrate that the balance of inputs to different neuron populations and input covariances are the primary determinants of output trial-by-trial variability. The effect of input covariances is contingent on the input balances. In general, the network exhibits smaller output trial-by-trial variability in a PV-dominated regime than in an SST-dominated regime. Importantly, our work reveals mechanisms by which output trial-by-trial variability can be controlled in a context, state, and task-dependent manner.

Identifiants

pubmed: 37620550
doi: 10.1038/s42003-023-05231-0
pii: 10.1038/s42003-023-05231-0
pmc: PMC10449833
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

874

Informations de copyright

© 2023. Springer Nature Limited.

Références

J Neurophysiol. 2011 Feb;105(2):942-57
pubmed: 20861439
Science. 2019 Aug 9;365(6453):
pubmed: 31320556
PLoS Comput Biol. 2019 May 16;15(5):e1006999
pubmed: 31095556
Science. 1996 Dec 6;274(5293):1724-6
pubmed: 8939866
PLoS Comput Biol. 2014 Aug 28;10(8):e1003811
pubmed: 25165853
Elife. 2017 Jun 07;6:
pubmed: 28590902
Elife. 2019 Mar 18;8:
pubmed: 30883329
Nat Rev Neurosci. 2010 Jul;11(7):474-89
pubmed: 20531421
Nature. 2012 Aug 16;488(7411):343-8
pubmed: 22878717
J Comput Neurosci. 2000 May-Jun;8(3):183-208
pubmed: 10809012
Neuron. 2009 Mar 26;61(6):952-63
pubmed: 19324003
Science. 2015 Nov 27;350(6264):aac9462
pubmed: 26612957
Science. 2010 Jan 29;327(5965):587-90
pubmed: 20110507
Trends Neurosci. 2013 Mar;36(3):141-51
pubmed: 23273272
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011903
pubmed: 20866644
Cell. 2016 Jan 14;164(1-2):208-218
pubmed: 26771492
Neuron. 2019 Oct 23;104(2):412-427.e4
pubmed: 31466734
PLoS Comput Biol. 2012 Aug;8(8):e1002596
pubmed: 23133368
Science. 1995 Jun 9;268(5216):1503-6
pubmed: 7770778
J Neurosci. 2015 Jun 3;35(22):8611-25
pubmed: 26041927
Cell Rep. 2018 Nov 6;25(6):1548-1560.e3
pubmed: 30404009
Dev Neurobiol. 2011 Jan 1;71(1):45-61
pubmed: 21154909
Neuron. 2011 Oct 20;72(2):231-43
pubmed: 22017986
Nat Neurosci. 2010 Mar;13(3):369-78
pubmed: 20173745
Brain Struct Funct. 2017 Dec;222(9):4239-4252
pubmed: 28660418
Nat Methods. 2020 Mar;17(3):261-272
pubmed: 32015543
Nat Neurosci. 2023 Sep;26(9):1584-1594
pubmed: 37640911
J Neurosci. 2012 Jan 25;32(4):1413-28
pubmed: 22279226
Neuron. 2021 Mar 3;109(5):751-766
pubmed: 33596406
Nat Rev Neurosci. 2008 Apr;9(4):292-303
pubmed: 18319728
Nature. 2014 Jan 16;505(7483):318-26
pubmed: 24429630
Elife. 2022 Aug 22;11:
pubmed: 35994330
Nat Neurosci. 2012 Nov;15(11):1498-505
pubmed: 23001062
Nat Neurosci. 2016 Mar;19(3):383-93
pubmed: 26906505
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8110-5
pubmed: 10859358
Neuron. 2020 Dec 23;108(6):1181-1193.e8
pubmed: 33301712
Nature. 2010 Dec 16;468(7326):964-7
pubmed: 21131948
J Neurosci. 2010 Nov 24;30(47):15760-8
pubmed: 21106815
Science. 1996 Sep 27;273(5283):1868-71
pubmed: 8791593
J Neurosci. 2004 Mar 10;24(10):2345-56
pubmed: 15014109
PLoS Comput Biol. 2012;8(3):e1002395
pubmed: 22479168
Nat Neurosci. 2008 May;11(5):535-7
pubmed: 18376400
Elife. 2020 Jun 29;9:
pubmed: 32598278
J Neurophysiol. 2012 Nov;108(9):2383-92
pubmed: 22896720
Nat Neurosci. 2017 Jul;20(7):951-959
pubmed: 28481348
J Neurosci. 2017 Jan 4;37(1):97-109
pubmed: 28053033
Nature. 2007 Aug 16;448(7155):802-6
pubmed: 17700699
Cereb Cortex. 2015 Oct;25(10):3818-35
pubmed: 25410428
J Neurophysiol. 2005 Nov;94(5):3637-42
pubmed: 16014787

Auteurs

Lihao Guo (L)

Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology Stockholm, Stockholm, Sweden. lihaog@kth.se.
Scilife Lab, Stockholm, Sweden. lihaog@kth.se.

Arvind Kumar (A)

Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology Stockholm, Stockholm, Sweden. arvkumar@kth.se.
Scilife Lab, Stockholm, Sweden. arvkumar@kth.se.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice
West Nile Fever Animals West Nile virus Humans Enteric Nervous System
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH