Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
09 2023
Historique:
received: 27 10 2022
accepted: 14 07 2023
medline: 14 9 2023
pubmed: 25 8 2023
entrez: 24 8 2023
Statut: ppublish

Résumé

Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.

Identifiants

pubmed: 37620585
doi: 10.1038/s41594-023-01069-6
pii: 10.1038/s41594-023-01069-6
pmc: PMC10497415
doi:

Substances chimiques

Cytoplasmic Dyneins EC 3.6.4.2
Dyneins EC 3.6.4.2
Dynactin Complex 0
Oligonucleotides 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1357-1364

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM107214
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM141825
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM145296
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).
pubmed: 29662141 pmcid: 6457270 doi: 10.1038/s41580-018-0004-3
Wickstead, B. & Gull, K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8, 1708–1721 (2007).
pubmed: 17897317 pmcid: 2239267 doi: 10.1111/j.1600-0854.2007.00646.x
Harada, A. et al. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141, 51–59 (1998).
pubmed: 9531547 pmcid: 2132725 doi: 10.1083/jcb.141.1.51
Lipka, J., Kuijpers, M., Jaworski, J. & Hoogenraad, C. C. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41, 1605–1612 (2013).
pubmed: 24256262 doi: 10.1042/BST20130188
Canty, J. T. & Yildiz, A. Activation and regulation of cytoplasmic dynein. Trends Biochem. Sci. 45, 440–453 (2020).
pubmed: 32311337 pmcid: 7179903 doi: 10.1016/j.tibs.2020.02.002
Cianfrocco, M. A., DeSantis, M. E., Leschziner, A. E. & Reck-Peterson, S. L. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 31, 83–108 (2015).
pubmed: 26436706 pmcid: 4644480 doi: 10.1146/annurev-cellbio-100814-125438
Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).
pubmed: 2533206 doi: 10.1242/jcs.93.1.19
Torisawa, T. et al. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat. Cell Biol. 16, 1118–1124 (2014).
pubmed: 25266423 doi: 10.1038/ncb3048
Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303–1314 (2017).
pubmed: 28602352 pmcid: 5473941 doi: 10.1016/j.cell.2017.05.025
McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337 (2014).
pubmed: 25035494 pmcid: 4224444 doi: 10.1126/science.1254198
Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33, 1855–1868 (2014).
pubmed: 24986880 pmcid: 4158905 doi: 10.15252/embj.201488792
Chaaban, S. & Carter, A. P. Structure of dynein–dynactin on microtubules shows tandem adaptor binding. Nature 610, 212–216 (2022).
Urnavicius, L. et al. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554, 202–206 (2018).
pubmed: 29420470 pmcid: 5988349 doi: 10.1038/nature25462
Elshenawy, M. M. et al. Lis1 activates dynein motility by modulating its pairing with dynactin. Nat. Cell Biol. 22, 570–578 (2020).
pubmed: 32341547 pmcid: 7212015 doi: 10.1038/s41556-020-0501-4
Htet, Z. M. et al. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat. Cell Biol. 22, 518–525 (2020).
pubmed: 32341549 pmcid: 7271980 doi: 10.1038/s41556-020-0506-z
Grotjahn, D. A. et al. Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat. Struct. Mol. Biol. 25, 203–207 (2018).
pubmed: 29416113 pmcid: 5969528 doi: 10.1038/s41594-018-0027-7
Redwine, W. B. et al. The human cytoplasmic dynein interactome reveals novel activators of motility. eLife 6, e28257 (2017).
pubmed: 28718761 pmcid: 5533585 doi: 10.7554/eLife.28257
Heil-Chapdelaine, R. A., Oberle, J. R. & Cooper, J. A. The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J. Cell Biol. 151, 1337–1344 (2000).
pubmed: 11121446 pmcid: 2190597 doi: 10.1083/jcb.151.6.1337
Kormanec, J., Schaaff-Gerstenschläger, I., Zimmermann, F. K., Perecko, D. & Küntzel, H. Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Mol. Gen. Genet 230, 277–287 (1991).
pubmed: 1745235 doi: 10.1007/BF00290678
Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).
pubmed: 12620184 doi: 10.1016/S0960-9822(03)00013-7
Marzo, M. G., Griswold, J. M. & Markus, S. M. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat. Cell Biol. 22, 559–569 (2020).
pubmed: 32341548 pmcid: 7413593 doi: 10.1038/s41556-020-0492-1
Lee, W.-L., Oberle, J. R. & Cooper, J. A. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160, 355–364 (2003).
pubmed: 12566428 pmcid: 2172672 doi: 10.1083/jcb.200209022
Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).
pubmed: 10498683 doi: 10.1242/dev.126.20.4477
Markus, S. M., Punch, J. J. & Lee, W.-L. Motor- and tail-dependent targeting of dynein to microtubule plus ends and the cell cortex. Curr. Biol. 19, 196–205 (2009).
pubmed: 19185494 pmcid: 2674299 doi: 10.1016/j.cub.2008.12.047
Willins, D. A., Liu, B., Xiang, X. & Morris, N. R. Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol. Gen. Genet 255, 194–200 (1997).
pubmed: 9236777 doi: 10.1007/s004380050489
Xiang, X. & Qiu, R. Cargo-mediated activation of cytoplasmic dynein in vivo. Front. Cell Dev. Biol. 8, 598952 (2020).
pubmed: 33195284 pmcid: 7649786 doi: 10.3389/fcell.2020.598952
Dix, C. I. et al. Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs. J. Cell Biol. 202, 479–494 (2013).
pubmed: 23918939 pmcid: 3734092 doi: 10.1083/jcb.201211052
Tarricone, C. et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44, 809–821 (2004).
pubmed: 15572112
Kim, M. H. et al. The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12, 987–998 (2004).
pubmed: 15274919 doi: 10.1016/j.str.2004.03.024
DeSantis, M. E. et al. Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170, 1197–1208 (2017).
pubmed: 28886386 pmcid: 5625841 doi: 10.1016/j.cell.2017.08.037
Gillies, J. P. et al. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 11, e71229 (2022).
pubmed: 34994688 pmcid: 8824474 doi: 10.7554/eLife.71229
Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).
pubmed: 22939623 pmcid: 3438448 doi: 10.1016/j.cell.2012.07.022
Toropova, K. et al. Lis1 regulates dynein by sterically blocking its mechanochemical cycle. eLife 3, e03372 (2014).
pubmed: 25380312 pmcid: 4359366 doi: 10.7554/eLife.03372
Parrini, E., Conti, V., Dobyns, W. B. & Guerrini, R. Genetic basis of brain malformations. Mol. Syndromol. 7, 220–233 (2016).
pubmed: 27781032 pmcid: 5073505 doi: 10.1159/000448639
Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717–721 (1993).
pubmed: 8355785 doi: 10.1038/364717a0
Qiu, R., Zhang, J. & Xiang, X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J. Cell Biol. 218, 3630–3646 (2019).
pubmed: 31562232 pmcid: 6829669 doi: 10.1083/jcb.201905178
Qiu, R., Zhang, J., Rotty, J. D. & Xiang, X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr. Biol. 31, 4486–4498.e6 (2021).
pubmed: 34428469 pmcid: 8551030 doi: 10.1016/j.cub.2021.07.081
Gutierrez, P. A., Ackermann, B. E., Vershinin, M. & McKenney, R. J. Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein–dynactin motility. J. Biol. Chem. 292, 12245–12255 (2017).
pubmed: 28576829 pmcid: 5519373 doi: 10.1074/jbc.M117.790048
Emre Kusakci, Z. M. H., John P. G., Reck-Peterson S. L., & Yildiz A. Lis1 binding regulates force-induced detachment of cytoplasmic dynein from microtubules. Preprint at bioRxiv https://doi.org/10.1101/2022.06.02.494578 (2022).
Schmidt, H., Zalyte, R., Urnavicius, L. & Carter, A. P. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518, 435–438 (2015).
pubmed: 25470043 doi: 10.1038/nature14023
Eshel, D. et al. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Natl Acad. Sci. USA 90, 11172–11176 (1993).
pubmed: 8248224 pmcid: 47944 doi: 10.1073/pnas.90.23.11172
Li, Y. Y., Yeh, E., Hays, T. & Bloom, K. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl Acad. Sci. USA 90, 10096–10100 (1993).
pubmed: 8234262 pmcid: 47720 doi: 10.1073/pnas.90.21.10096
Muhua, L., Karpova, T. S. & Cooper, J. A. A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell 78, 669–679 (1994).
pubmed: 8069915 doi: 10.1016/0092-8674(94)90531-2
Lammers, L. G. & Markus, S. M. The dynein cortical anchor Num1 activates dynein motility by relieving Pac1/LIS1-mediated inhibition. J. Cell Biol. 211, 309–322 (2015).
pubmed: 26483554 pmcid: 4621840 doi: 10.1083/jcb.201506119
Markus, S. M. & Lee, W.-L. Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex. Dev. Cell 20, 639–651 (2011).
pubmed: 21571221 pmcid: 3099244 doi: 10.1016/j.devcel.2011.04.011
Moore, J. K., Stuchell-Brereton, M. D. & Cooper, J. A. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. Cell Motil. Cytoskeleton 66, 546–555 (2009).
pubmed: 19402153 pmcid: 2746759 doi: 10.1002/cm.20364
Roberts, A. J., Goodman, B. S. & Reck-Peterson, S. L. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3, e02641 (2014).
pubmed: 24916158 pmcid: 4046564 doi: 10.7554/eLife.02641
Markus, S. M. et al. Quantitative analysis of Pac1/LIS1-mediated dynein targeting: implications for regulation of dynein activity in budding yeast. Cytoskeleton 68, 157–174 (2011).
pubmed: 21294277 doi: 10.1002/cm.20502
Carvalho, P., Gupta, M. L., Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).
pubmed: 15177030 doi: 10.1016/j.devcel.2004.05.001
Caudron, F., Andrieux, A., Job, D. & Boscheron, C. A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae. J. Cell Sci. 121, 1506–1513 (2008).
pubmed: 18411245 doi: 10.1242/jcs.023374
Reimer, J. M., DeSantis, M. E., Reck-Peterson, S. L. & Leschziner, A. E. Structures of human cytoplasmic dynein in complex with the lissencephaly 1 protein, LIS1. eLife 12, e84302 (2023).
pubmed: 36692009 pmcid: 9889085 doi: 10.7554/eLife.84302
Han, B.-G. et al. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J. Struct. Biol. 195, 238–244 (2016).
pubmed: 27320699 pmcid: 4943657 doi: 10.1016/j.jsb.2016.06.009
Lahiri, I. et al. 3.1Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. J. Struct. Biol. 207, 270–278 (2019).
pubmed: 31200019 pmcid: 6711803 doi: 10.1016/j.jsb.2019.06.004
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256 pmcid: 6584505 doi: 10.1038/s42003-019-0437-z
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
pubmed: 33257830 doi: 10.1038/s41592-020-00990-8
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved single-particle cryo-electron microscopy. Nat. Methods. 4, 331–332 (2017).
doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).
pubmed: 33060581 pmcid: 7567117 doi: 10.1038/s41467-020-18952-1
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).
pubmed: 29872004 pmcid: 6096492 doi: 10.1107/S2059798318006551
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Struct. Biol. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Song, Y. et al. High-resolution comparative modeling with rosettaCM. Structure 21, 1735–1742 (2013).
pubmed: 24035711 doi: 10.1016/j.str.2013.08.005
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).
pubmed: 17401334 doi: 10.1038/nprot.2007.13
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).
Baumbach, J. et al. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 6, e21768 (2017).
pubmed: 28406398 pmcid: 5413349 doi: 10.7554/eLife.21768

Auteurs

Eva P Karasmanis (EP)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Janice M Reimer (JM)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Agnieszka A Kendrick (AA)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Kendrick H V Nguyen (KHV)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Jennifer A Rodriguez (JA)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Joey B Truong (JB)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Indrajit Lahiri (I)

School of Biosciences, University of Sheffield, Sheffield, UK.

Samara L Reck-Peterson (SL)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. sreckpeterson@ucsd.edu.
Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA. sreckpeterson@ucsd.edu.
Howard Hughes Medical Institute, Chevy Chase, MD, USA. sreckpeterson@ucsd.edu.

Andres E Leschziner (AE)

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. aleschziner@ucsd.edu.
Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA. aleschziner@ucsd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH